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Abstract. Adolescents are recommended to sleep at least 8-10 hours per day. 

Inadequate sleep in adolescents is detrimental to their overall wellbeing and is 

linked to poor academic performance. Identifying causes of poor sleep in the 

sleep environment can help researchers and adolescents determine what changes 

need to be made to improve sleep quality. However, in-situ sleep monitoring is 

challenging because measurements cannot interfere with sleep, and people are 

poor at remembering what happens during the night. We report on the feasibility 

testing of an in-situ sleep monitoring application that uses passive sensing to 

drive context-sensitive ecological momentary assessments (EMAs) to help par-

ticipants recall sleep disruptions when they wake up in the morning. Participants 

answered over 80% of EMAs delivered during the feasibility study and could 

recall meaningful reasons for over 40% of noise and motion events when they 

answered context-sensitive questions presented in the morning EMA. We discuss 

some challenges and future opportunities in sleep disruption detection. 

Keywords: sleep disruptions, adolescents, mobile health, EMA, experience 

sampling, smartphone, smartwatch 

1 Introduction  

According to recommendations by the American Academy of Sleep Medicine, adoles-

cents aged 13-18 should sleep at least 8-10 hours per day [22]. Adolescents who do not 

get adequate sleep have a higher risk of obesity, diabetes, injuries, poor mental health, 

and problems with attention and behavior [21]. Although there has been work on as-

sessing sleep duration and sleep quality in both adults and adolescents in clinical set-

tings with controlled environments [6, 17], there has been limited research on identify-

ing and understanding the causes of sleep disruptions in-situ. In-situ sleep monitoring 

is challenging because any measurement used should not interfere with the individual’s 

sleep, and people are poor at remembering what happened during wake events during 

the night [7]. One way to unobtrusively measure sleep disruptions is to collect self-

reported information to assess sleep quality [8]. However, self-report may introduce 
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response burden and recall bias [16, 29]. We developed a system designed to advance 

understanding of in-situ sleep disruptions by delivering ecological momentary assess-

ments (EMAs) that respond to automatically detected events that may result from sleep 

disruption. The timing of administering EMAs to understand sleep behaviors is im-

portant because the longer an individual is awake, the less the person will remember 

about intermittent wake events that occurred during the night [26]. The goal of the re-

search tool prototype we test in this study is to help scientists understand the relation-

ship between sleep disruption events and sleep quality. 

In-situ sleep monitoring allows for the examination of contextual factors that influ-

ence adolescent sleep, including environmental stimuli, social interactions, and techno-

logical use. For instance, research has shown that exposure to computer or smartphone 

screens before bedtime can disrupt sleep patterns and contribute to sleep deficiency in 

adolescents [14]. By integrating environmental and behavioral data with sleep metrics, 

in-situ monitoring may offer researchers valuable insights into the multifaceted nature 

of sleep regulation in adolescents. Furthermore, automated in-situ sleep monitoring 

may facilitate future systems that provide the early detection of sleep disorders and 

related health issues in adolescents. Adolescents are vulnerable to sleep disorders such 

as insomnia, sleep apnea, and delayed sleep phase syndrome, which can impair daytime 

functioning and lead to long-term health consequences [19]. Timely identification of 

sleep disturbances through in-situ monitoring may enable healthcare providers to inter-

vene promptly and provide tailored treatments, thereby mitigating the adverse effects 

of sleep disorders on adolescent health and well-being. We present preliminary results 

from feasibility testing of the SleepMeasurement application we developed that uses 

data from a smartphone, smartwatch, and environmental sensor to deliver context-sen-

sitive EMAs intended to monitor sleep quality. Feasibility was assessed in a two-week 

pilot study with 12 adolescents. 

2 Related work 

Poor sleep quality among adolescents negatively impacts overall well-being and aca-

demic performance [2, 4, 11, 20, 25, 27]. One cross-sectional survey involving 150 

adolescents evaluated sleep quality in relation to age and sleep-related habitual and en-

vironmental factors [20]. The results revealed that 82.0% of participants exhibited poor 

sleep quality, irrespective of their stage of adolescence. Factors such as later bedtime, 

longer sleep latency, presence of electronic devices in the bedroom, and engagement 

with social media before sleep were associated with a higher likelihood of poor sleep 

quality [25]. Vazsonyi et al. conducted a two-year longitudinal study with 586 adoles-

cents that demonstrated the developmental significance of sleep quality, as opposed to 

sleep quantity, on various aspects of adolescents’ mental health and adjustment. Spe-

cifically, poor sleep quality increased depression, anxiety, low self-esteem, and exter-

nalizing behaviors over time, highlighting the impact of sleep disturbances on adoles-

cent well-being [27]. These findings underscore the need for interventions that assist 

adolescents and their caregivers in recognizing sleep disruptions to mitigate the adverse 

effects of poor sleep quality on their physical and mental health. 
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Polysomnography (PSG), a procedure that records brain activity using an electroen-

cephalogram (EEG) and other sensors, is the gold standard for sleep monitoring in clin-

ical settings. However, acquiring PSG data requires attaching many sensors to the head 

and body. For this reason, PSG is most often only performed in clinical sleep centers 

with trained technicians [15]. Alternative, less-invasive techniques for evaluating sleep 

quality have been developed [13] for in-situ measurements. Self-report surveys provide 

a practical means of gathering information about sleep. The Munich ChronoType Ques-

tionnaire (MCTQ), for example, can effectively identify irregular sleep patterns influ-

enced by socio-demographic factors [10]. EMAs have also been used to monitor sleep 

quality [9, 12, 28]. However, self-report surveys rely on participant memory. Passively 

sensed sleep data, alternatively, eliminate recall bias. Beattie et al. used optical pulse 

plethysmography (PPG) and accelerometers to collect overnight sleep data from adults, 

achieving 69% accuracy in classifying the four sleep stages [5]. Zhang et al. [30] pro-

posed a multi-level feature learning technique to classify sleep stages based on actigra-

phy and heart rate, achieving classification accuracies of 64.0% and 60.5% for different 

groups. Additionally, Nakamura et al. introduced Hearables [18], using in-ear sensors 

to classify sleep stages with 74% accuracy. Using passively sensed data alone, however, 

will fail to capture subjective sleep quality assessments, and body-worn passive sensing 

may not provide rich contextual data about events taking place in an environment that 

impact sleep-related behavior and sleep quality. Our system addresses the limitations 

of using EMA, such as reducing recall bias [24] in participants' responses, by adminis-

tering context-sensitive EMA [23] that relies on passively sensed data to facilitate 

memory recall and help participants identify causes of motion and noise disruption 

events.  

3 System Design 

Upon consenting to participate in our study, participants were loaned a Moto G Play 

smartphone (Motorola, Inc.), Fossil Gen 6 smartwatch (Fossil, Inc.) and an Omron 

2JCIE-BU01 environmental sensor (Omron Electronics, Inc.); the sleep measurement 

application we developed was installed on the smartphone and smartwatch. The envi-

ronmental sensor was connected to a USB wall charger and plugged into a wall outlet 

in the participant’s bedroom at the beginning of the study, and participants were in-

structed not to move this sensor during the study. The phone and smartwatch chargers 

were also plugged into the wall near the bed and set up so the phone and the watch 

could be left charging next to the bed (Fig. 1). Research staff brought portable bedside 

trays to homes and extensions cords to ensure this arrangement would be possible. Staff 

tried to ensure that the environmental sensor was not directly next to a loud device (e.g., 

fan) with the sensor taped to the bedside table to best measure the ambient light in the 

room from the perspective of the in-bed adolescent.  

The environmental sensor recorded noise level (dB), light intensity (lm), temperature 

(°C), barometric pressure (Pa), relative humidity (%), and CO2 levels (eCO
2
), each at 1 

Hz, and transmitted aggregated data every minute to the smartphone via Bluetooth. The 

smartphone and smartwatch ran an Android application we developed. The phone was 
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set up to receive data from the environmental sensor every minute as an average of the 

1 Hz measurements over the minute. The phone also received motion data from the 

smartwatch every minute. These data were used to estimate possible sleep disruptions. 

 

      

Fig. 1. Example setup of the smartwatch, smartphone, and Omron environmental sensor at a 

participant’s home 

Participants used the system for two weeks of the school year while participants at-

tended school daily. On the first day of the study, a member of the research staff talked 

with participants and their families to assess typical sleep behaviors and input approx-

imate sleep, wake, and dinner times into our application for each day of the upcoming 

two weeks. These sleep, wake, and dinner times could be adjusted remotely during the 

study by the research team if necessary. The research staff member also showed partic-

ipants what a sample morning and evening survey would look like, instructed partici-

pants on how to charge the devices, and explained to participants when they would 

receive surveys. The phone had parental control software installed on it so that partici-

pants would not misuse study phones. The watch was plugged in by the bed and partic-

ipants were instructed to take it off the charger only around dinnertime or afterwards, 

before going to bed; they were told to place it back on the charger in the morning. Each 

night, starting one hour after the set dinner time, participants were prompted on the 

phone (which remained in the bedroom) to remember to answer a bedtime survey. They 

were instructed to answer the bedtime survey right before going to sleep. This reminder 

was prompted every 15 minutes starting at dinner time until the participant answered 

the survey before sleeping. The bedtime survey administered 16-19 questions each day; 

the questions asked about caffeine intake, technology use, noise around the house that 

might keep a participant awake past bedtime, and a question for females that asked 

about period cramps if the participant indicated they were menstruating. Algorithms on 

the phone and watch apps detected significant motion and noise disruptions during the 

night, which were used in a morning EMA survey. To enable remote data collection, 

all data collected by the SleepMeasurement application were uploaded to our servers 
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over Wi-Fi, if available, or a cellular data connection that we provided on the research 

phone. 

Participants were prompted using audio and vibration to answer a seven-question 

morning survey on their phone starting 10 minutes after the wake time set for the day. 

Prompting continued until the participant either completed the survey or until 11:59 

AM of the day. The morning survey always contained questions about when the partic-

ipant went to bed the previous night, when the participant woke up that morning, and 

perceived quality of the participant’s sleep. If the SleepMeasurement application de-

tected times when there was a loud noise or a significant motion event, up to six addi-

tional questions could be asked about motion or noise disruptions between the partici-

pant’s sleep and wake events. The motion and noise detection algorithms are described 

in Subsections 3.1 and 3.2. 

3.1 Motion detection algorithm 

We deployed a motion-detection algorithm on the Fossil Gen 6 smartwatch. The smart-

watch collected raw three-axis accelerometer data at 50 Hz (i.e., the ‘raw signal’) with 

a range of ±8 g. The raw signal was smoothed using a moving average filter with a 

window size of 0.5 s, resulting in the ‘filtered signal.’ This window size was picked to 

remove large magnitude noise with near real-time (0.5 s delay) detection of motion 

events, resulting in the best tradeoff for the purpose of the SleepMeasurement applica-

tion.  For each axis (e.g., x), the app then computed the area under the filtered curve 

(AUC) at timestamp ‘t’ as AUCxt
 = | rawxt – filteredxt 

| to approximate removing the DC 

component of the signal, compensating for the effect of gravity on the axis. To conserve 

battery and minimize CPU use on the smartwatch, we calculated a simple motion sum-

mary for all three axes as AUC(x+y+z)
t
 = AUCxt

 + AUCyt
 + AUCzt

. An alternative ap-

proach could be to calculate the norm of the AUC(x+y+z)
t
 vector, but this would be more 

computationally intensive on the smartwatch. Data were aggregated in a 10 s window 

(i.e., approximately 500 values) to obtain an orientation-independent motion summary: 

𝐴𝑈𝐶10𝑠 = ∑ AUC(𝑥+𝑦+𝑧)𝑡

500 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 (10 𝑠)
𝑡=0 . 

Then, we used thresholds to decide if a period of AUC10s should be classified as a 

non-motion or motion event. The algorithm used two bounds for the AUC values: a 

lower bound l indicating any AUC10s values that are too low to be motion events, and 

an upper bound u for any AUC10s values that we were certain would be caused by a 

significant motion event. The AUC10s values were passed through a weighting function, 

which mapped the AUC10s value to a real number between [0,1] using linear interpola-

tion. This continuous value, AUCscore, indicated the significance of the AUC10s value. 

An AUCscore of 1 indicates strong certainty that the high AUC10s is caused by a signifi-

cant motion, while a AUCscore of 0 indicates certainty that a low AUC10s value that is 

caused by non-wear or sleep.  

After all the AUCscore values were computed, we computed if the participant was 

awake at timestamp t. A motion event was defined as sustained motions for at least five 

minutes. We passed a window size wd = 5 to the algorithm, averaged the AUCscore for 

the past wd minutes, denoted by AUCavg, and compared to a threshold Tw ∈ ( 0,1). We 
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marked an event over a period of wd minutes, denoted by Ew, using the following func-

tion: 𝐸𝑊 =  {
𝑛𝑜𝑛 − 𝑚𝑜𝑡𝑖𝑜𝑛 𝑒𝑣𝑒𝑛𝑡,

𝑚𝑜𝑡𝑖𝑜𝑛 𝑒𝑣𝑒𝑛𝑡,

𝐴𝑈𝐶𝑎𝑣𝑔  < 𝑇𝑤

𝐴𝑈𝐶𝑎𝑣𝑔  ≥ 𝑇𝑤
 

After tuning the detection algorithm on five participants (three females, two males) 

from the research team, we set the parameters of the algorithm as follows: l = 50, u = 

500, Tw = 0.5, wd = 5. All computations for the motion algorithm were performed on 

the Fossil Gen 6 smartwatch, and identified motion event timestamps were sent to the 

smartphone every minute until the smartphone acknowledged receipt of the event 

timestamp. These timestamps were used to present specific motion questions in the 

morning survey. 

3.2 Noise detection algorithm 

The environmental sensor sent data to the phone every minute for processing. Based on 

prior work that studied the effect of noise levels on patients’ sleep in an intensive care 

unit [3] and CDC thresholds for loud noises that could be disruptive [1],  we classified 

a timestamp as noisy during sleep if the aggregated sound pressure level for the minute 

was above 70 dB. The phone identified the three most significant noise events during 

the night in the morning before the morning survey was answered. It did this by picking 

the highest noise value above 70 dB from the time that the participant completed the 

bedtime survey, or one hour after the set sleep time if the participant had not answered 

the bedtime survey, until 10 min before the morning survey was answered, and marking 

that as a noise event. The algorithm then removed all other noise measurements within 

15 min of the identified noise event, and then repeated the selection, looking for the 

second 70+ dB event. The procedure was then repeated a third time, resulting in zero 

to three noise events with timestamps for the evening. These timestamps were used to 

present specific noise questions in the morning survey. 

3.3 Participant recruitment 

This study was approved by the IRB of Case Western Reserve University (protocol 

STUDY20201856). Adolescents were recruited using flyers posted at recreational cen-

ters, libraries, after-school programs, information tables at health fairs, and neighbor-

hood block parties. Adolescents were recruited if (1) the participant was 11 to 14 years 

old; (2) the participant’s parent was 18+ years old; and (3) the participant and caregiver 

were willing to provide access to the adolescent’s bedroom or sleeping area to ensure 

study equipment (chargers, environmental sensor) were appropriately situated. Addi-

tionally, only one adolescent and caregiver per family could participate in the study. 

Adolescents were excluded from participation based on the parent/caregiver’s report if 

the adolescent had a diagnosed neurodevelopmental disorder, a diagnosed serious 

chronic disease, or a diagnosed sleep disorder; if the adolescent had an inability to speak 

or read English; if the child and parent would not be sleeping at home during the two-

week study period; and if the family was residing in a shelter.  
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3.4 Data Analysis 

Each participant had to answer one EMA survey before going to bed and one EMA 

survey the next morning after waking up, resulting in a total of 14 morning survey 

prompts and 14 bedtime survey prompts per participant, if the participant answered 

every survey during the study period. We analyzed data from the 12 participants to 

compute compliance and completion rates and other descriptive statistics about answer-

ing patterns. Completion rate is defined as: 
𝑃𝑟𝑜𝑚𝑝𝑡𝑠 𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑

𝑃𝑟𝑜𝑚𝑝𝑡𝑠 𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
×  100. 

Surveys could be scheduled but not delivered due to reasons such as the phone not 

being charged. To measure the number of surveys answered during the two-week study 

period, we define Compliance rate as: 
𝑃𝑟𝑜𝑚𝑝𝑡𝑠 𝑎𝑛𝑠𝑤𝑒𝑟𝑒𝑑

𝑃𝑟𝑜𝑚𝑝𝑡𝑠 𝑠𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑
×  100. 

4 Preliminary results 

Initially, 13 participants consented to participate in the study. However, one participant 

did not have electricity for the duration of the study, making it impossible to keep the 

devices charged, and thus was removed. Participant demographics for the remaining 12 

participants from the feasibility study are reported in Table 1.  

Table 1. Participant demographics 

Variable n 

Sex 9 male, 3 female 

Age (years) Avg 12.9 years old (SD=1.1) 

Race 4 black, 5 white, 3 biracial 

4.1 Survey statistics 

Overall, participants had a survey completion rate of 82.6% and compliance rate of 

61.3%. One participant did not charge the smartphone or smartwatch for the second 

week of the study despite multiple attempts to contact the participant by the research 

team; we report on only the first week of data from this participant.  

Table 2 shows the questions asked in the morning and the distribution of the re-

sponses. Overall, we received 101 morning survey responses and 105 responses from 

the bedtime survey. If a participant started answering a survey but did not complete it 

at that time, the smartphone continued to prompt the participant to complete the survey, 

and the survey was available to answer until the end of the prompting period. The me-

dian response duration for the morning survey was 54.3 s (SD = 563.9 s, range = 22.9 

– 5,720.6 s). The median response duration for the evening survey was 83.4 s (SD = 

959.7 s, range = 36.9 – 9,528.4 s). Figure 2 shows the summary of motion and noise 

events detected, and specific questions answered for each participant. Overall, 313 

noise and 210 motion events were detected; 121 specific noise and 62 specific motion 
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questions were answered; and 54 meaningful noise and 23 meaningful motion answers 

were collected (answers other than “Don’t know”).  

Table 2. Results from the morning survey in order of appearance of question in survey. The 

morning survey questions that asked about sleep and wake time are not included here. 

Questions Distribution of responses 

“How good was your sleep last night?” 0 “Very bad” (0%), 42 “Bad” (41.6%), 26 “So-so” 

(25.7%), 33 “Good” (32.7%), 0 “Very good” 

“Last night were there any times when 

you moved around and maybe even got 

out of bed?” (general motion question) 

78 “None” (77.2%), 17 “One time” (16.8%), 4 

“Two times” (3.9%), 2 “Three or more times” 

(2.1%) 

“Last night were there any loud noises 

that might have disturbed you?” (gen-

eral noise question) 

94 “None” (93.1%), 7 “One time” (6.9%), 0 “Two 

times” (0%), 0 “Three or more times” (0%) 

“Last night around [time] you moved 

around a lot in bed and maybe even got 

up. Do you remember what hap-

pened?” (specific motion question) 

39 “Don’t know” (62.9%), 10 “Lying awake in 

bed” (16.1%), 4 “Went to the bathroom” (6.4%), 3 

“Something else” (4.8%), 2 “Got a snack or 

drink” (3.2%), 2 “Used electronics” (3.2%), 1 

“Answered a text message” (1.7%), 1 “Answered 

a phone call” (1.7%) 

“Last night around [time] there was a 

loud noise that might have disturbed 

you. Do you remember what it was?” 

(specific noise question) 

67 “Don’t know” (55.4%), 30 “Something else” 

(24.8%), 15 “I was doing something” (12.4%), 5 

“Voices from other rooms in the house” (4.1%), 2 

“TV or radio” (1.7%), 1 “Voices outside the 

house” (0.8%), 1 “Traffic” (0.8%) 

4.2 Context-sensitive EMA to assist morning recall 

Throughout the study, participants reported 888.7 hours of sleep (calculated based on 

the responses on the morning survey). Our system collected 595.3 hours of AUC data 

from the smartwatch and 775.9 hours of environment data from the Omron sensor. 

There were 62 nights overall when the watch was not charged; we received no AUC 

data on those nights as a result. Figure 3 shows the percentage of sensing data collected 

using our system for each participant. The percentage of data collected per night was 

calculated as the number of hours of data collected by the watch/Omron sensor, divided 

by the total hours of sleep reported by the participants in the morning survey. We omit-

ted the data from P15 because P15 did not charge the devices on many days of the 

study. P12 only charged the smartwatch once, resulting in 1.5 days of AUC data. Over-

all, our system collected 43.2% of AUC data from the smartwatch (SD = 37.7), and 

78.3% of environmental sensing data from the Omron sensor per night (SD = 32.7). 

The low percentage of the overall AUC data was due to technical issues caused by 

unreliable Bluetooth connection between the smartwatch and the smartphone, and bat-

tery issues, discussed in Section 5. 
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Our system was able to capture motion and sound signals from participants, despite 

the technical difficulties. Figure 4 shows graphs of AUC and sound data collected from 

the system for two participants, with markers indicating the self-reported sleep and 

wake time, time when the bedtime and morning survey were completed, and the mo-

tion/noise events asked about during the morning survey. P19 was able to recall most 

of the noise and motion events detected by the system (Fig. 4 (a)). For P17, even though 

a significant amount of AUC data from the watch was missing due to low battery issues 

(the smartwatch only had 35% battery at 10 PM), the system was able to capture dis-

ruptive noise events using the Omron sensor and collect meaningful labels for the noise 

events, shown in Fig. 4 (b). 

 

  

Fig. 2. Plots showing the overall number of events detected, questions answered, and questions 

with meaningful answers (i.e., any answers other than the “Don’t know” option) per participant 

for both noise and motion detection over the duration of the feasibility study.  

5 Discussion 

The SleepMeasurement application used sensor data from a smartwatch and Omron 

environmental sensor to provide contextual information for morning surveys. The Fos-

sil Gen 6 smartwatch that we used for the study was the best model available at the time 

for continuous accelerometer data collection and real-time data processing. However, 

the smartwatch had issues with low battery life when running our software (~11 hours 

on a single charge), and unreliable Bluetooth connectivity. Low battery life led us to 

lose more than 50% of AUC data across all participants over the study duration. The 

battery life issue was exacerbated by the smartwatch charger being sensitive to place-

ment, with vibrations or other movements leading to the watch being displaced from 

the correct charging position, and subsequent discharging. Additionally, the smart-

watch went into battery saver mode when the battery dropped below 30%, resulting in 

intermittent data as shown in Fig. 4(b). In response, we made the decision to have par-

ticipants don the smartwatch before going to bed and charge the smartwatch during the 

day.  

The unreliability of the Bluetooth connection led to many specific motion questions 

not being asked in the morning survey because the smartwatch was unable to communi-

cate with the smartphone promptly. The smartwatch often lost connection with the 

smartphone and sometimes did not automatically reconnect unless one of the devices 
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was restarted. This could have been caused due to a participant rolling over and sleeping 

on top of the watch, restricting the Bluetooth connection. We had no programmatic 

control over the state of the Bluetooth connection due to restrictions placed by the An-

droid operating system on the smartphone and smartwatch. The connection between the 

smartphone and Omron was more reliable; we did, however, still lose data when there 

was interference with the Bluetooth connection from Wi-Fi, or when the Omron sensor 

was out of range from the phone. We only received real-time data from the Omron 

sensor, resulting in lost data when the sensor was not in connection with the 

smartphone. 

 

 

Fig. 3. Distribution of percentages of sensing data collected from the watch (AUC data) and the 

Omron sensor per day for each participant over the study duration.  

The timing of the morning survey prompt was crucial to ensure that participants an-

swered the EMA as close as possible to the waketime for best recall, but not early 

enough to disrupt sleep, and not so late that they missed answering the EMA and left 

for school. We initially planned to have the smartwatch detect a participant’s wake time 

in real-time and communicate that information to the smartphone to present the morn-

ing survey accordingly. However, based on testing with our research team, we found 

automatic waketime detection to be unviable due to the unreliable Bluetooth connection 

between the smartwatch and smartphone. We thus decided to minimize reliance on 

communication between the smartwatch and smartphone by having the smartphone 

prompt the morning survey at a set waketime depending on the participant’s schedule.  

In the morning surveys, we provided context to participants in the form of times 

during the night when a significant motion or loud noise event was detected; the goal 

was to improve recall. Although recall improved on the provision of additional context 

for both noise and motion events (Section 4.2), participants were sometimes unable to 

recall the disruption event the next morning. Recording loud noise events and playing 

them in the morning survey might help provide participants with additional context that 

could help identify causes of disruption. This could, however, raise privacy concerns 

about recording sensitive conversations or other information that the participant or fam-

ily members of the participant may not want to share.  

The version of the noise detection algorithm described in this paper did not filter out 

constant sources of loud noises such as fans, heating or cooling systems, snoring, or 

television in the background. If these are consistent noises, participants may not find 
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them disruptive, but the system can still mark the events as disruptive noise. Future 

systems should use a more advanced noise filtering algorithm to avoid flagging elimi-

nate such constant sources of noise in the background as noise events that trigger EMA 

questions. The Omron environmental sensor recorded data in addition to sound levels, 

including temperature, humidity, and barometric pressure levels; we did not ask partic-

ipants about these data in the morning survey in this version of the SleepMeasurement 

application. Future systems could incorporate these values to potentially improve recall 

of disruptive events.  

 

 
 

 
 

Fig. 4. Each subplot shows a night of sensing data (AUC and sound) collected overlaid with 

watch-phone connectivity for two participants. The smartwatch was connected to the 

smartphone if there is a green dot/line for that timestamp. Dashed purple lines mark participant 

events. Arrows mark answers to specific motion and noise questions. 

b

b
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Although we tested the current version of the SleepMeasurement application with 

adolescents, this system could be extended to other populations, including adults inter-

ested in understanding the effect of environmental factors on their sleep quality. To 

reduce data loss, we recommend using newer smartwatches that have improved battery 

life and Bluetooth connectivity. A smartwatch that can continuously collect motion data 

for over 15 hours without needing to be charged would be ideal to minimize data loss. 

We conducted preliminary tests where we ran the SleepMeasurement application on 

Pixel Watch 2 smartwatches and found that the Pixel Watch 2 had a battery life of ~20 

hours and improved Bluetooth connectivity with the smartphone, leading to lower data 

loss. This version of the system did not provide any feedback to participants; future 

versions of this system could provide actionable insights on what an individual might 

change to reduce environmental disruptions in one’s sleep environment.  

6 Conclusion 

In-situ sleep monitoring can help researchers understand sleep behaviors in a natural 

setting. In this manuscript, we described technical details of a system we developed that 

uses EMA and passive sensing to identify causes of sleep disruptions in adolescents. 

Participants had an overall completion rate >80% for EMAs. Participants could recall 

over 40% of the motion and noise events present as part of the morning EMA. Address-

ing challenges such as filtering out background noises in the environment, and over-

coming smartwatch battery and Bluetooth connectivity issues, remain challenges to ad-

dress in future sleep monitoring system development and research.  
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