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Abstract
𝜇EMAs allow participants to answer a short survey quickly with
a tap on a smartwatch screen or a brief speech input. The short
interaction time and low cognitive burden enable researchers to
collect self-reports at high frequency (once every 5-15 minutes)
while maintaining participant engagement. Systems with single
input modality, however, may carry different contextual biases
that could affect compliance. We combined two input modalities to
create a multimodal-𝜇EMA system, allowing participants to choose
between speech or touch input to self-report. To investigate system
usability, we conducted a seven-day field study where we asked
20 participants to label their posture and/or physical activity once
every fiveminutes throughout their waking day. Despite the intense
prompting interval, participants responded to 72.4% of the prompts.
We found participants gravitated towards different modalities based
on personal preferences and contextual states, highlighting the need
to consider these factors when designing context-aware multimodal
𝜇EMA systems.

CCS Concepts
• Human-centered computing→ Empirical studies in ubiq-
uitous and mobile computing.

Keywords
Ecological momentary assessment, Experience sampling, Ubiqui-
tous computing; Wearable computing; Speech input; Touch input;
Multimodal input

ACM Reference Format:
Ha Le, Veronika Potter, Rithika Lakshminarayanan, Varun Mishra,
and Stephen Intille. 2025. Feasibility and Utility of Multimodal Micro Ecolog-
ical Momentary Assessment on a Smartwatch. In CHI Conference on Human
Factors in Computing Systems (CHI ’25), April 26–May 01, 2025, Yokohama,

This work is licensed under a Creative Commons Attribution 4.0 International License.
CHI ’25, Yokohama, Japan
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1394-1/25/04
https://doi.org/10.1145/3706598.3714086

Japan. ACM, New York, NY, USA, 22 pages. https://doi.org/10.1145/3706598.
3714086

1 Introduction
Accurately detecting human behaviors is an important research
area in ubiquitous computing, human-computer interaction, and
personal health informatics. Researchers can use behavior recog-
nition models to drive context-aware interactive systems, just-in-
time interventions, or health monitoring tools. Building behavior
inference systems requires datasets that have high-fidelity labels
of behavior that can be used to effectively train models. Systems
that can be used to collect temporally-dense, in-situ behavioral data
may result in datasets that could be used to help build and validate
behavioral recognition models. Such labeled data might also be
used to create personalized recognition models that may accurately
detect behavioral patterns.

A particularly important human activity recognition (HAR) task
in health and other domains is the detection of human posture, phys-
ical activity (PA), and sedentary behaviors from wearable sensors.
Effectively training, validating, and benchmarking such HAR mod-
els, however, requires large, continuously labeled datasets. Most
wearable HAR datasets are collected in heavily controlled [36] or
semi-controlled [18] settings; the resulting datasets may not re-
flect the diversity and complexity of activities that people engage
in during daily living. Models trained on such datasets, therefore,
often perform poorly when tested on data from real-world, less-
controlled scenarios [112] — where people have a wider range of
activities or move their bodies more naturally. For example, when
someone is told to sit in the lab, they may move in a controlled way
and sit upright, but when they sit in real-life, they may plop down
on a couch and lounge. Moreover, some activities, such as driving,
are common in everyday life but difficult to capture realistically
in lab protocols. The gold-standard method used to collect labels
in-the-wild is to use an egocentric on-body camera to record images
or video; the visuals are then used to label posture and behaviors
post-hoc [14, 32]. For researchers, labeling the images or videos
[45] is time-consuming, tedious and resource-intensive. Further,
because human labeling is involved, the method cannot be used for
developing systems that gather new labels in real-time and update
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models in-situ. For the participants in studies, the burden of wear-
ing the front-facing, on-body camera can raise significant privacy
concerns [46] about recording the activities of the participant and
those nearby; thus participant recruiting can be challenging.

Ecological Momentary Assessment (EMA) is a data collection
method whereby participants in research studies are prompted to
complete short surveys periodically, often on their smartphone [98].
𝜇EMA is a specific form of EMA where where researchers prompt
participants to answer a single multiple-choice question using an
“at-a-glance,” single-tap interaction, often on a smartwatch screen
[43]. Researchers have extended 𝜇EMA to enable participants to
provide their behavioral labels using speech input, triggered by a
vibration on a smartwatch or a beep heard through an earable [59,
91]. By design, each 𝜇EMA prompt delivers only a single question
that can be answered quickly, which enables 𝜇EMAs to be prompted
at a high interval (e.g., once every 5-15 min) while maintaining a
high response rate and thus ensuring temporally dense labels. One
challenge with deploying 𝜇EMAs is that there may be contextual
biases in response rates that depend, in part, on the modality of data
entry (e.g., participants may be less inclined to speak to the watch
in public settings or tap on the watch during vigorous exercise)
[59, 83].

In this work, we combine speech and touch input to allow mul-
timodal 𝜇EMA, giving participants maximum flexibility when
self-reporting behaviors (in this case their posture and activity). We
explore the impact of multimodal interaction on reporting burden,
where our aim is to test a methodology that may allow participants
to maintain a high compliance rate despite data collection using a
temporally intensive prompting interval—once every five minutes.
Our research questions are:

• RQ1: What is the usability and feasibility of using multi-
modal 𝜇EMA to collect temporally dense posture and physi-
cal activity labels in-the-wild?

• RQ2: What factors affect participants’ non-response and
modality choice when responding to multimodal 𝜇EMA
prompts?

• RQ3: What are the characteristics and potential utility of
the posture and physical activity labels collected with multi-
modal 𝜇EMA?

To address these questions, we conducted a seven-day field study
with 20 participants. The key contributions of our work are:

• We introduce a newmultimodal 𝜇EMAdata collectionmethod
that allows speech and/or touch input. We explore the us-
ability of our system in the context of collection of posture
and activity labels by conducting a mixed-method field study
with 20 participants for seven days.

• We quantitatively show that on our acquired dataset, pas-
sively sensed contextual parameters (heart rate, wrist move-
ments, location, ambient noises, phone usage, time of day and
day of week) are associated with response rate and choice of
interaction modality. Furthermore, we qualitatively examine
how interruption and interaction burden are associated with
multimodal 𝜇EMA.

• We explore the characteristics and utility of labels collected
using our system, and we demonstrate that automatic, real-
time label extraction is possible using an adapted commer-
cial speech recognition model and an open-source large-
language model.

2 Related Works
This work builds on prior research on ecological momentary as-
sessment (EMA), multimodal input, and in-situ data collection —
the methods that have been used to collect human behavioral data.

2.1 Collecting in-situ behavioral labels using
ecological momentary assessment (EMA)

Ecological momentary assessment [95], sometimes called the expe-
rience sampling method, is a data collection method widely used in
behavioral monitoring research to collect longitudinal data [19, 98].
Using EMA, researchers can collect ecologically valid measure-
ments by using notifications on a mobile phone or wearable device
to prompt participants to report data in-situ. The primary disadvan-
tage of EMA is that the participants may perceive notifications as
burdensome because they are prompted in-situ; pulling out a device
and stopping an ongoing activity to answer surveys can disrupt
the behaviors being measured. Thus, most research studies seek to
balance compensation and burden to ensure a high response rate
to EMA [111]. 𝜇EMA [43, 52] is a modified version of the standard
EMA method where each prompt is guaranteed to include only a
single-question survey, often presented on the smartwatch, that
can be answered with a quick tap; 𝜇EMAs (microinteraction EMAs)
are designed to be answerable with “at a glance,” single-tap inter-
actions that take only 2-3 s. Prior research has demonstrated that
even when 𝜇EMA surveys are delivered at rates of up to four times
an hour, participants in research studies can maintain a response
rate significantly higher than for standard EMA [43, 82]. 𝜇EMAs
can be implemented well on a smartwatch, because the watch is
easily accessible on the wrist. One limitation of 𝜇EMA delivered
on a smartwatch, however, is the limited amount of space available
on the watch screen, which reasonably can only support multiple-
choice questions with less than five options. While this limitation
helps ensure 𝜇EMA questions do not become too complex, it also
makes 𝜇EMA more suitable as a prediction confirmation mecha-
nism (e.g., “Are youwalking?” “Yes/No”) than for input that involves
selecting from a list of possibilities (e.g., "What are you doing now?"
with a long list of activities). Another consideration when using
smartwatch-based 𝜇EMA is that answering a question requires a
two-handed interaction, which can be inconvenient during certain
activities (e.g., driving or carrying groceries). Audio-𝜇EMA [59]
allows participants to use speech input to provide open-ended re-
sponses. In audio-𝜇EMA, the system prompts participants using
either a short acoustic cue presented through an earable, or if a
watch is used, through a vibration on the wrist; the prompt indicates
that the participant should speak the answer to a known question
(e.g., what is their in-the-moment behavior). Due to the hands-free
nature of speech interaction [89], audio-𝜇EMA could allow capture
of a wide range of behavioral labels (e.g., postures, activities, or
contextual information) while maintaining a high response rate.
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A limitation of all EMA-based implementations is that in-the-
moment contextual parameters may affect response rate [83]; this
contextual reactivity could impact the validity of some types of
behavior data collected using this method (e.g., if participants are
unwilling to respond while exercising, we would not gather any
labels on this activity to train recognition models). Thus, combining
different modalities of EMA and a retrospective recall may be re-
quired to capture a comprehensive picture of a participant’s entire
waking day. Multimodal EMA systems have been developed for
home environments [63, 110]; in that work, even though partici-
pants preferred touch interactions to voice commands, modality
preferences varied based on participants’ contextual states. How-
ever, we are aware of no research to date on using a multimodal
𝜇EMA system in free-living settings.

2.2 Multimodal data logging and tracking
systems

People interact with the world around them by speaking, touching,
gesturing, drawing, and pointing; they use different modes, alter-
natively or simultaneously, in different contexts [94]. Multimodal
input interfaces can improve user experience and system robustness
[78] on multiple tasks such as data analytics/exploration [49, 51,
92, 101], tracking exercise, [66] tracking food intake [53, 65, 67, 96],
and in-car communication [44, 54, 58, 104].

Touch is themost common inputmodality used in health-tracking
applications, mainly due to the ubiquitous nature of commercial
smartphones and smartwatches. Recently, there has been an in-
crease in research on voice-based interfaces for behavioral logging
[4, 51, 66]. Researchers have implemented voice-based interfaces on
many device form factors because voice does not require a physical
interface. Although researchers reported users’ positive reactions
to speech input, the method presents challenges related to address-
ing cognitive load, social context, and speech recognition errors
[96]. Other modalities like touch or keyboard often complement
speech inputs to allow error reconstruction [78]. Researchers have
also explored the uses and combination of different input modal-
ities (e.g., voice log [38, 65, 67, 96], photos [27, 28, 65, 69], touch
[65, 96], and type [69]) on different device form factors (e.g., mo-
bile [65, 67, 69, 96], desktop [69], smartwatch [4, 38, 50], and smart
speaker [63]) for behavioral journaling/tracking.

Even if a system allows multimodal interaction, users are not
guaranteed to interact multimodally [77]. A user’s modality us-
age patterns are heavily influenced by external and task contexts.
Researchers have shown modality usage can be affected by the cog-
nitive and communication load of the task [79], contextual variables
(e.g., surrounding environments, movements/activities, hand usage,
visual load) [61, 87], and physical/mental interaction effort [13]. In
this paper, we investigate the usability of our multimodal 𝜇EMA
system and examine different contextual variables that affect user
modality choice, given the task of recording posture and physical
activity labels.

2.3 Collecting human activity labels in-the-wild
Capturing information about a person’s free-living physical activ-
ities (PA) labels in-the-wild can support better training of HAR
models and more realistic evaluation of such models. One approach

is to use participants’ self-reported data, often acquired either via
end-of-day survey [8], in-situ measurements (EMA) [85], or a mix-
ture of both [41, 106]. Labels collected using end-of-day recall sur-
veys tend to suffer from recall bias, in which events happening
before or after can affect the recalled event. Fast-changing, over-
lapping sequences of activities [6] can often lead to mistakes in
labeling activity boundaries, which can significantly reduce model
performance [55]. An alternative approach to self-report is to use
a body-worn camera, where participants wear a front-facing cam-
era around their neck [24, 34, 47] or on their head [32] to capture
an egocentric narrative of their daily life. Although this approach
does not create a response burden for the participant, it introduces
privacy concerns that may hinder participant recruitment and is
not sustainable for longitudinal studies. Furthermore, labeling a
large volume of video data after-the-fact is time-consuming. The
quality of annotating videos retrospectively relies on the annota-
tors’ ability to extract information about a person’s activity from
the first-person narrative video without any additional self-report
context.

In-situ measurement methods, such as EMA and 𝜇EMA, enable
participants to annotate their data in real-time, reducing the cogni-
tive biases associated with event recall. Voice-based, open-ended
𝜇EMA is particularly well-suited for capturing detailed human
activity labels, given the complexity and variability of human be-
havior. We hypothesized that combining voice- and touch-based
inputs could mitigate the contextual bias linked to non-responses in
voice-based 𝜇EMA, while maintaining a high participant response
rate and allowing the collection of a diverse range of postures and
activities.

3 Multimodal 𝝁EMA: System design and
implementation

The goal of the multimodal 𝜇EMA system described in this work
is to collect temporally-dense activity and posture labels from par-
ticipants while maintaining high compliance. To achieve this goal,
we allow participants to answer the prompt using either touch or
speech input (Figure 1). In this section, we outline the components
of our system and discuss their implementations.

3.1 Prompt design
The smartwatch uses haptic cues to prompt participants to report
their in-the-moment posture and activity. The haptic cue is short
(~1 s) to avoid distracting participants should they choose to, or
need to, ignore the prompt. The cue is ideally intense enough so
that participants are unlikely to miss the prompt during bouts of
intensive activity or in loud environments. We chose not to use an
auditory cue, because sounds from the smartwatch can be overheard
by others nearby, potentially causing social disruptions. After the
haptic cue, participants have 10 s to start responding to the prompt.
To capture temporally dense activity we prompt for 𝜇EMA input
once every five minutes.

3.2 Touch interaction
After the haptic cue, the watch screen displays four quadrants fea-
turing the system’s predictions of the most likely PA or posture
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DRAW the first letter 
of the activity

Recognition model
identified the letter

Choose from
a list of activities

Confirmation screen
(Click Cancel to invalidate 
the responses) - no audio 

saved

TAP from a list of activities
(SAME = similar activity from last 

prompt)

Prompt started with 
a vibration on the 

wrist

SPEAK your label
Prompt timed out 

(audio saved)

Repeat the drawing to 
narrow down the 

options
...

*All activities are 
reachable within 

3 letters

If activity/posture not in list

Figure 1: Multimodal 𝜇EMA allows users to self-report their posture and physical activity labels using either speech or touch
input on a smartwatch. When prompted using watch vibration, participants can complete the survey by either (1) speaking
normally (being recorded by the watch) or (2) tapping buttons or drawing letters then tapping a button on the watch to complete
the survey.

labels. The list of four activities shown in the initial screen is deter-
mined by the participant’s self-reported most-common activities, a
ranked list of which is acquired during a study onboarding session.
Subsequently, the system uses the participant’s previous 𝜇EMA
responses, current heart rate (HR), and the last 10 s of wrist motion
(determined using accelerometer data from the watch) to populate
the screen. We discuss the details of how we narrow down the
options in the implementation section and the appendix of this
paper.

If the participant chooses to interact with the system using a
touch interaction, they select a physical activity or posture by
tapping on the appropriate button quadrant on the watch screen.
If the participant chooses to use speech for their previous self-
report, then the watch screen will show an option labeled “SAME”
in one of the quadrants — this can be pressed to select the last-
reported activity/posture again. If the participant uses touch for
the prior self-report, then the name of the label that was selected
will replace the “SAME” option. If the participant cannot find their
in-the-moment activity on the screen, they can draw the first letter
(or more) of their activity on the screen over the buttons; this will
trigger a search for a different posture or activity that starts with
the letter(s). The system then displays the three most probable
activities based on the letters drawn. For example, if the participant
draws letter “B”/“b,” the screen might show “Biking,” “Bus (Riding),”
and “Baking.” If participants draws “CA,” the screen might show
“Car (Riding),” “Car (Driving),” and “Carrying Stuff.” Participants
can click on the fourth quadrant (“Others”) if they still cannot find
the label.

We considered combinations of three different mechanisms and
five different interactions on smartwatch self-reporting interfaces
(Figure 2b) [113, 114] based on prior work. Our internal pilot testing

suggested options A and C were more intuitive and less error-prone
than the other input options while still allowing us to include an
unlimited number of posture/activity labels. Option A enables users
to indicate the same activity/posture to the last prompt, which helps
reduce cognitive burden and interaction time. Option C enables
users to search for the label by drawing letters on the watch screen.
We displayed the list of labels in a radial/pie-list layout (P-list)
rather than the traditional horizontal-list layout (H-list) commonly
used in previous 𝜇EMA studies [85]. This decision was supported
by our internal testing, which suggested the H-list layout made
the middle options difficult to click due to limited spacing (Figure
2a). In contrast, the P-list layout provides equal space for all four
options and maximizes the interaction area.

Participants can cancel their responses if they make a mistake
(such as by tapping the wrong option, drawing incorrect letters, or
if the system misinterprets the letters). Participants have 10 s to
complete the self-report after every letter. Participants can cancel
their self-report by selecting the “Cancel?” button at the end of the
prompt or at any time by drawing the letter “X” on the watch face.
Participants can also simply not answer the prompt.

3.3 Speech interaction
In addition to touch interaction, system users can report their pos-
tures and activities using speech. We use the same interaction
design as prior work on an audio-𝜇EMA system [59]. When the
watch prompts the participant, the watch records audio either until
the participant reports using touch interaction, or 10 s has elapsed.
Because they do not need to even look at the watch or move their
hand, participants can maintain their movements while reporting
with speech. Although it is not required, even when participants



Multimodal 𝜇EMA CHI ’25, April 26–May 01, 2025, Yokohama, Japan

(a)

C Cooking

Cleaning

Cycling

Others

Lying

Use 
computer

Sitting

Others

Standing

Cooking

Running

None of
 these

On foot

On Bus

On Train

Others

Same response

sit in a meeting

Others

last report:

A B

Commute

C

transition- focused searching mechanism

First action

Subsequent 
action (s)

Submission

H- tapping

-

Tapping

P- tapping/ 
H- tapping

P- tapping/
H- tapping

Tapping

Drawing

P- tapping/
H- tapping

Tapping

Sliding

Tapping

Tapping Tapping

E

H/P- tapping/
Sliding

H/P- tapping/
Sliding

Use 
computer

D

A B C D E
iteration mechanism

P- tapping H- tapping

(b)

Figure 2: Designing touch interaction. Figure (a) is an example of a 𝜇EMA prompt using an h-list; when the buttons are small,
the options outlined in red are more difficult to tap than the options at the top and bottom and thus prone to mistakes. Figure
(b) shows the different designs proposed in our pilot testing. We considered three interaction mechanism: A) participants tap on
“SAME” to indicate if they are doing similar activity with the previous prompt, or “Others” if they cannot find the activity. B and
C) participants narrow down the list of labels by tapping on the high-level behavior (e.g., commute, work-related, relaxation)
or drawing the first letter of the label. D and E) participants cycled through a list of options by either swiping or tapping on the
screen until they found their desired label.

bring their hand closer to their mouth to use the speech input, it is
still a one-hand interaction (versus two-hand required for touch).

The system retains audio recordings until participants complete
labeling using touch input so that participants can switch to speech
input if their desired labels do not appear in the list using touch.
When participants opt to report via the touch interaction and com-
plete the interaction, the audio recording for that prompt is deleted
to minimize privacy concerns.

3.4 Implementation
We implemented the multimodal 𝜇EMA system to work on Android
Wear devices. For the evaluation study, we loaned participants a
Pixel Watch 2 (Alphabet, Inc) and paired the watch to the partici-
pant’s personal Android phone, which was running Android 9 or
above. The connection to the phone was used to transfer data to
our research server during the study. We implemented the system
to transfer data from the watch to our server once every hour using
Bluetooth and network connections to avoid overflowing the watch
storage. From our initial testing, however, the software can function
without network connection for up to one month.

We determine the list of activities shown on the watch screen
during a touch interaction using previous responses, accelerome-
ter and heart rate (HR) data collected from the smartwatch, and
common self-reported activities. The smartwatch estimates phys-
ical activity intensity using a real-time algorithm that measures
the overall motion of the wrist based on accelerometer data. The
smartwatch samples raw tri-axial accelerometer data at 50 Hz and
smooths the raw signal using a moving average filter with a win-
dow size of 0.5 s (filtered signal). For each axis, it computes the area
under the curve (AUC) 𝐴𝑈𝐶𝑡 = |𝑟𝑎𝑤𝑡 − 𝑓 𝑖𝑙𝑡𝑒𝑟𝑒𝑑𝑡 | to compensate
for the effect of gravity (DC offset for the axis) and calculates a 10 s
summary of AUC by summing AUC values from the three axes to
derive a physical activity summary unit [57, 59]. We implemented

the system to use a combination of HR and accelerometer data to
account for variability in participants’ heart rate level and wrist
motion during sedentary activities (e.g., hand gesturing during
conversation). More details about how the system determined the
suggested activities are explained in Appendix A.

If participants decide to draw on the watch screen to narrow
down the labels, the system uses a predefined activity and posture
list to narrow the search. The research team predetermined the
mapping between letter sequences and activities/postures. Four
research team members independently coded common activity ab-
breviations; and we used the abbreviations to set the mapping. We
derived the list of common activities from the 2024 Adult Com-
pendium of Physical Activities [37] and added in additional activi-
ties identified during our internal pilot testing. We included the list
of labels in our system in the supplementary materials. We used
Google Firebase’s digital ink recognition model 1 (Alphabet, Inc.)
to identify drawn letters.

4 STUDY DESIGN
We conducted a mixed-method, seven-day free-living study with
20 participants to evaluate the multimodal 𝜇EMA system. The
study took place in three parts: a ≈60-minute in-person introduc-
tion/training session, a seven-day free-living period where partici-
pants used the multimodal 𝜇EMA system to record their behavior,
and a ≈60-minute exit interview.

To ensure that the study was adequately powered to detect mean-
ingful differences, we conducted an a priori power analysis using
the MRT-SS Calculator2 for a micro-randomized control trial for
7 days, assuming 120 decision time points per day (i.e., 10 hours
of prompting 𝜇EMA, a constant randomization probability of 0.5
at each decision point, and an expected availability of 70%). This
1https://developers.google.com/ml-kit/vision/digital-ink-recognition
2https://d3center.shinyapps.io/mrt-ss-calculator/

https://developers.google.com/ml-kit/vision/digital-ink-recognition
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response rate assumption is based on the response rate from prior
works on 𝜇EMA and audio-𝜇EMA [38, 43, 59, 85]). We set the de-
sired power at 80% with a significance level of 0.05. Based on these
parameters, the analysis indicated that a minimum of 13 partici-
pants would be required to detect the hypothesized proximal effect
size. Our targeted recruitment of 20 participants exceeded the re-
quired sample size.

We recruited participants using posters placed around an aca-
demic campus, social media posts, and campus mailing lists. To be
eligible to enroll in the study, participants 1) were at least 18 years
old, 2) had no cognitive or hearing impairments, 3) were able to
read their phone without reading glasses, 4) used an Android phone,
5) were willing to install an Android application developed by the
research team on their phone, and 6) were willing to wear a smart-
watch provided by the research team for seven days and answer
the prompts on the watch. The study protocol was approved by the
IRB at Northeastern University. We compensated participants $75
in Amazon gift cards for the study ($20 for each in-person session,
and $5 for each day they wore the watch). We targeted recruitment
outside the computer science department and non-STEM students.
Besides the Amazon Gift Cards, participants in the study did not
receive any other incentives, e.g., class credits.

In later sections of the paper, we use the prefix Pwith a number to
denote participants from the field study. We show the demographic
summary of the 20 participants in Table 1.

After obtaining informed consent, we began the training session
by collecting demographic information about the participant — age,
occupation, and self-reported data about daily habits and physical
activity level. A research assistant paired the study smartwatch
with the participant’s personal Android phone and installed the
study application to ensure the system would work during the free-
living period. We showed participants a video demonstrating how
to use the multimodal 𝜇EMA system (included in the supplemental
materials). We asked participants to practice answering the 𝜇EMA
prompts with a research assistant so they could receive real-time
feedback on their responses and ask clarifying questions.

The seven-day, free-living portion of the study began the day
after the introductory training session. We instructed participants
to wear the provided smartwatch during their waking hours (or
until the watch ran out of battery), and report their in-the-moment
physical activity and/or posture each time they received a prompt,
which was every five minutes. Participants could respond to each
prompt using either speech or touch input. The system prompted
participants two hours before their sleep time to answer a daily
burden survey on their phone. The survey asked them to report
any instances in which they removed the watch, their experiences
with the system that day, and their expected sleep/wake times
for the following day. Additionally, they answered four questions
related to perceived burden. The burden questions were: “I feel com-
fortable wearing the smartwatch,” “I easily responded to the smart-
watch prompts,” “I responded to the smartwatch prompts quickly,”
and “The smartwatch is easy to learn how to use.” These questions
were adapted from prior work [59] and used a five-point Likert-
scale answer, ranging from “Strongly Disagree” to “Strongly Agree.”
Through these questions, we attempted to measure participants’
interaction burden, including their comfort with the watch and the
ease of responding to prompts, specifically examining perceived

response speed and difficulties in formulating answers. We also
asked if the watch or the phone needed to be recharged at any time
during the day. To gain additional insights about the effects of the
prompting frequency, we collected qualitative feedback from partic-
ipants during the exit interviews. Once a day, a research assistant
sent a text message to the participants to remind them to wear the
watch and answer any questions or concerns.

At the end of the seven-day period, participants returned the
watch and attended an in-person semi-structured exit interview.
During the interview, we asked participants about their experi-
ences using the system including difficulties they may have had
while using the system, scenarios when they chose to use speech
verses touch input to answer the prompts, and factors influencing
their willingness to respond to a prompt. Participants also pro-
vided general feedback they had on the system and how to improve
multimodal 𝜇EMA in future deployments. Overall, 20 participants
consented to enroll in the study, and all 20 participants finished the
7-day study (no dropouts).

5 Analysis Plan
Our analysis tested these following hypotheses and used thematic
analysis to analyze the transcript from the exit interviews.

5.1 Hypotheses
We tested four hypotheses to quantitatively evaluate research ques-
tions R1 and R2. The hypotheses are motivated by prior works on
𝜇EMA and EMA. H1 and H2 are related to how temporal factor
(day into study) affects participants’ response behavior. H3 and H4
are related to how passively-measured factors affect participant’s
response behavior.

• H1: Participants’ response rate to 𝜇EMAwould decrease over
time.

• H2: Participants’ perceived burden of multimodal 𝜇EMA
would decrease over time.

• H3: There are associations between passively measured con-
textual factors and participants’ modality choice.

• H4: There are associations between passively measured con-
textual factors and participants’ response rate.

Prior works have shown that day-into-study has a significant
effect on 𝜇EMA and EMA response rate. Non-response for EMA
tends to be lowest in the beginning of a study and then increase
as the study goes on [11, 20, 62, 83, 97]. We also hypothesized
that perceived burden would decrease over time as participants
acclimated to the smartwatch and responding to 𝜇EMA.

To examine the effects of passively-measured factors on partic-
ipants’ modality choices, we choose seven contextual variables:
heart rate, wrist movement, location, phone usage, ambient noises,
time of day, and day of week. The passively-measured variables
were selected based on prior works, as well as the sensing capability
on the smartwatch and the phone. Results from prior works on
EMA, 𝜇EMA, and multimodal interactions and impact on response
rates are summarized in Table 2.

5.2 Thematic analysis
We performed inductive coding to assess the usability of multi-
modal 𝜇EMA and identify participants’ perceive source of burden.
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Table 1: Demographics of participants in the field study (N=20). The categories for ethnicity and race are those recommended
by the U.S. National Institute of Health [75]. We do not include categories with no participants in the table.

N=20

Age (mean (STD)) 25.8 (3.1)
Sex (n (%)) Female 7 (35%)

Male 13 (65%)
Ethnicity (n (%)) Non-Hispanic 19 (95%)

Hispanic 1 (5%)
Race (n (%)) Asian 16 (80%)

White 2 (10%)
Bi-racial 2 (10%)

Occupation (n (%)) Student 13 (65%)
Full-time employed 4 (20%)
Part-time employed 3 (15%)

Daily routine (n (%)) Highly structured 3 (15%)
Fairly structured 9 (45%)
Moderately structured 4 (20%)
Not structured 4 (20%)

Activity level (n (%)) Sedentary 11 (55%)
Moderate 3 (15%)
Vigorous 6 (30%)

Familiar with tracking technologies (n (%)) Very Familiar 11 (55%)
Somewhat familiar 6 (30%)
Not familiar 3 (15%)

Use a smartwatch (n (%)) 7 (35%)

Table 2: Summary of prior research examining various passive sensing variables’ effects on response rate and modality choice
for EMA and 𝜇EMA.

Contexts Prior Works Passively-Measured Variables Study Findings

Activity levels [25, 39, 48, 64,
72, 83]

Heart rate, wrist movement Increased response rates and voice interaction for physi-
cal activity group than sedentary group

Phone usage [83, 108] Phone interactive Decreased non-response with recent phone use
Social context [87, 103, 116] Detecting speech or conversation

in the background
Increased non-response and decreased voice interaction
during social interactions

Environmental noise [39, 72] Detecting noises in the background Increased non-response and decreased voice interaction
with environmental noise

Location [88, 99] Home vs. not home Decreased non-response at home than other locations
Time of day [11, 20, 83, 97] Morning, afternoon, evening, and

night
Decreased non-response in the morning than in the af-
ternoon or late evening

Day of the week [68, 99] Weekday vs. weekend Not a statistically significant predictor for response rate

Two authors carefully read each transcript from our field study and
performed open-ended coding using inductive coding [26]. The
authors coded the transcript independently and met frequently to
reconcile disagreement. The codes were generated and improved
iteratively. We merged similar codes/themes and removed codes
outside the scope of our research. The interrater agreement (Co-
hen’s kappa) was 𝜅 = 0.74.

6 RESULTS
We report quantitative and qualitative results from the field study
to answer each research question (RQ).

6.1 RQ1: Assessing the usability of multimodal
𝝁EMA

In the field study, we collected 135 days of data from 20 participants.
We lost three days of data for P16 and two days of data for P10
because the participants deleted the app before the exit interviews
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and the devices had not transmitted data to the research server.
Participants responded to 11,320 of the 15,635 delivered prompts
(72.4%) — averaging 84 prompts per day. We investigated the usabil-
ity of the multimodal 𝜇EMA system on a smartwatch for seven days
by calculating compliance and usability metrics (Table 3). We col-
lected responses on the System Usability Survey (SUS) [12] during
the exit interview.

We calculated three prompt response metrics (Table 3): 1) com-
pliance rate refers to the number of prompts that participants inter-
acted with (𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐴𝑛𝑠𝑤𝑒𝑟𝑒𝑑) over the number of prompts sched-
uled based on participants’ wake/sleep time (𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑);
2) response rate refers to 𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐴𝑛𝑠𝑤𝑒𝑟𝑒𝑑 over the number of
prompts successfully delivered (𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑); and 3) success
rate refers to 𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 over the number of prompts an-
swered by the participants. 𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑 are touch responses
that participants did not cancel, or speech responses that are intel-
igible to human annotators. We computed the compliance rate as
in prior works on 𝜇EMA [43, 59, 83]. The completion rate shows
the level of engagement the participant had with the system (the
percentage of the questions answered among the questions success-
fully prompted and delivered) while the compliance rate shows how
much data the system captured within a waking day relative to what
was anticipated. Compliance is an important metric to consider for
future studies to deploy multimodal 𝜇EMA to annotate activities
and postures for the entire waking day. Overall, participants were
highly engaged with the system, with the response rate of 72.4%
(45.7% or 5,087 of the responses were speech input). The battery
limitation of the watch explains the gap in compliance and response
rate. The majority of the responses were captured successfully by
the system (success rate of 99.8%). Among the 𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐴𝑛𝑠𝑤𝑒𝑟𝑒𝑑 ,
6% of the responses were "SAME" (𝑛 = 670). The majority (94.8%,
128/135) of the canceled touch inputs were recovered by speech
input. Even though there was no upper bound on response time for
touch input, the average interaction time was 0.3 s.

We statistically analyzedwhether day-into-study affects response
rate over time (H1) (Figure 3). We used linear mixed-effect mod-
els with random intercept for each participant, with the following
formula:

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒_𝑟𝑎𝑡𝑒 ∼ 𝑑𝑎𝑦_𝑖𝑛𝑡𝑜_𝑠𝑡𝑢𝑑𝑦 + (1|𝑠𝑢𝑏 𝑗𝑒𝑐𝑡_𝑖𝑑).

Results from the linear mixed-effect model show that response rate
decreased over time (𝛽 = −.01, 𝑆𝐸 = 0.01, 𝑝 < .05). This indicates
that the response rate declined by 1% for each day of the study.

We collected 106 responses for the daily burden survey (response
rate: 84.8%). Among the responses, 71 (66.9%) mentioned the watch
or the phone needed to be recharged during the day: “It was quite
smooth to use just that the battery [of the watch] would get drained
out fast” [P21]. For each daily burden survey, we converted the
Likert responses into a numeric score, with “Strongly Disagree” as
1 and “Strongly Agree” as 5. We statistically tested whether the
participants’ responses to individual questions on the daily burden
survey changed over time (H2). We fitted linear mixed-effect models
for each of the four survey questions with random intercept for
each participant, following the formula (𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 is the final
score converted from the Likert scale for each question):

𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑_𝑠𝑐𝑜𝑟𝑒 ∼ 𝑑𝑎𝑦_𝑖𝑛𝑡𝑜_𝑠𝑡𝑢𝑑𝑦 + (1|𝑠𝑢𝑏 𝑗𝑒𝑐𝑡_𝑖𝑑).

Our results show a decreasing trend over time for question 4: “I
feel comfortable wearing the smartwatch” (𝛽 = −.03, 𝑆𝐸 = .02,
𝑝 = .04). This suggests participants feel less comfortable with
the smartwatch over time, which somewhat contradicts our initial
assumption in H2. We found no statistically significant result for
the other three questions. We show the distribution of responses
for each questions in the burden survey in Figure 4.

Our system also received a high usability score (SUS) of 80.1,
suggesting high perceived usability [7]. We present the results from
the individual questions of SUS in Appendix C.

6.2 RQ2: Factors affecting modality choice and
response rate in multimodal 𝝁EMA prompts

In this section, we quantitatively examine how in-the-moment con-
textual factors affected participants’ modality choice and response
rate (H3, H4). We discuss our qualitative findings on how varying
interruption and interaction burden influence participant’s decision
making process.

6.2.1 Associations of in-the-moment contextual factors with re-
sponse rate and modality choice. The distribution of modality usage
differs widely across all participants (Fig 5). This variance can be
attributed to multiple factors: personal preferences, in-the-moment
contextual variables, and prompt interaction/interruption burden.

We used a mixed-effect logistic regression with a random in-
tercept for each participant to predict whether the participant re-
sponded to the 𝜇EMA prompt (response = 1 vs. non-response = 0).
Additionally, we use another mixed-effect logistic regression with
a random intercept for each participant to evaluate associations
of contexts with modality they opted for (speech = 1 vs. touch =
0). Using the passively collected data, we identified seven in-the-
moment contextual variables to use as predictors of non-response
and modality choice. These variables include heart rate, wrist move-
ment, location, phone usage, ambiance noises, time of day, and type
of day.

Heart rate.Weused the heart ratemeasured by the PixelWatch 2
at the time of the prompt. If the participants were not wearing the
watch at the time of the prompt, we imputed the value with the
average heart rate of each participant.

Wrist movement. For wrist movement, we used the AUC unit
(as computed in Section 3.4) calculated at the closest time before a
prompt. The AUC unit is calculated once every 10 seconds.

Location. The study app recorded GPS data (longitude and
latitude) from a participant’s personal phone once every minute.
We used the DBSCAN clustering algorithm to identify prominent
location clusters where participants spent time during the seven-
day study. We labeled the cluster the participants were at most
frequently during their self-reported sleep time as “Home,” and
other locations were labeled as “Not Home.” We used the location
label closest to the time of a prompt as the predictor in our models.
“Not home” was the reference variable for the mixed-effect models.

Phone usage. We gathered phone usage data from participants’
personal phones at one-minute intervals. "Phone in use" was set to
1 when a prompt appeared with the phone screen on, 0 otherwise.

Ambient noises. The watch passively listened to 10 seconds of
audio before each 𝜇EMA prompt and used Google’s YAMNet audio
classification model [30] to determine the ambient noises present
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Table 3: Usability metrics for multimodal 𝝁EMA. #𝒑𝒓𝒐𝒎𝒑𝒕𝒔𝑪𝒐𝒎𝒑𝒍𝒆𝒕𝒆𝒅 are speech responses that were intelligible to human
annotators and touch responses that the participants did not cancel. #𝒑𝒓𝒐𝒎𝒑𝒕𝒔𝑨𝒏𝒔𝒘𝒆𝒓𝒆𝒅 are prompts participants interacted
with (e.g., an audio input that is not intelligible would be answered but not completed). #𝒑𝒓𝒐𝒎𝒑𝒕𝒔𝑫𝒆𝒍 𝒊𝒗𝒆𝒓𝒆𝒅 are successfully
delivered prompts. #𝒑𝒓𝒐𝒎𝒑𝒕𝒔𝑺𝒄𝒉𝒆𝒅𝒖𝒍𝒆𝒅 are the number of hours between participant’s self-reported wake and sleep times,
multiplied by 12. Interaction time measures the duration from the first touch interaction to the last touch interaction. Error
recovery rate is the rate of touch responses being canceled and replaced by speech over all canceled touch input.

Metric Formula All-prompt Mean Between-subject
Mean (SD)

Compliance rate #𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐴𝑛𝑠𝑤𝑒𝑟𝑒𝑑

#𝑝𝑟𝑜𝑚𝑝𝑡𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒𝑑
(%) 63.1 65.6 (21.4)

Response rate #𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐴𝑛𝑠𝑤𝑒𝑟𝑒𝑑

#𝑝𝑟𝑜𝑚𝑝𝑡𝐷𝑒𝑙𝑖𝑣𝑒𝑟𝑒𝑑
(%) 72.4 74.2 (11.5)

Success rate #𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑑

#𝑝𝑟𝑜𝑚𝑝𝑡𝑠𝐴𝑛𝑠𝑤𝑒𝑟𝑒𝑑
(%) 99.8 99.8 (2.34)

SAME rate #𝑆𝐴𝑀𝐸
#𝑝𝑟𝑜𝑚𝑝𝑡𝐴𝑛𝑠𝑤𝑒𝑟𝑒𝑑

(%) 6.01 8.85 (12.9)

SUS scores — — 80.1 (11.9)

Error recovery rate #𝑡𝑜𝑢𝑐ℎ𝑇𝑜𝑆𝑝𝑒𝑒𝑐ℎ
#𝑡𝑜𝑢𝑐ℎ𝐶𝑎𝑛𝑐𝑒𝑙𝑙𝑒𝑑 (%) — 94.8 (1.55)

Interaction time (touch input) 𝑙𝑎𝑠𝑡𝑇𝑜𝑢𝑐ℎ − 𝑓 𝑖𝑟𝑠𝑡𝑇𝑜𝑢𝑐ℎ (s) 0.3 (0.16) —
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Figure 4: Distribution of responses for individual items in the
daily burden survey.

right before a prompt. The model ran locally on the smartwatch,
and no raw audio recordings were saved. We categorized the noises
into three mutually-exclusive labels: “Speech,” “Silence,” or “Other
noises.” If “Speech” was detected during the 10-second period, the
ambient noise of the prompt was set to “Speech.” If “Silence” was
the only noise detected by the YAMNet model, the ambient noise
label was set to “Silence.” Otherwise, the ambient noise label was
set to “Other noises.” “Silence” was the reference variable for the
mixed-effect models.

Time of day.We converted the 24-hour time of day into four
categories: Morning (6 am to 12 pm), Afternoon (12 pm to 6 pm),
Evening (6 pm to 12 am), and Night (12 am to 6 am). “Morning” was
the reference variable for the mixed-effect models.

Day of week.We converted each day into “weekday” (Mon-Fri)
and “weekend” (Sat/Sun). “Weekend” was the reference variable
for the mixed-effect models.

Day into study. Day into study ranged from day 1 to day 7.
We show the mixed-effect models below, where 𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 is

whether the participant responded to a prompt (response vs. non-
response), and𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 is either speech or touch. Results from the
mixed-effect models are shown in Table 4.

𝑟𝑒𝑠𝑝𝑜𝑛𝑠𝑒 ∼ ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒 + 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_ + 𝑝ℎ𝑜𝑛𝑒_𝑢𝑠𝑎𝑔𝑒 + 𝑎𝑚𝑏𝑖𝑒𝑛𝑡_𝑛𝑜𝑖𝑠𝑒
+𝑡𝑖𝑚𝑒_𝑜 𝑓 _𝑑𝑎𝑦 + 𝑑𝑎𝑦_𝑜 𝑓 _𝑤𝑒𝑒𝑘 + 𝑑𝑎𝑦_𝑖𝑛𝑡𝑜_𝑠𝑡𝑢𝑑𝑦 + (1|𝑠𝑢𝑏 𝑗𝑒𝑐𝑡_𝑖𝑑) .

(1)
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Figure 5: Distribution of modality choice and non-responses for all participants. Even though the ratio of speech to touch input
for all participants was relatively balanced (54.7% touch, 45.3% speech), there was large variance between participants. We
removed P15 since the participant withdrawn from the study during the consent period.

𝑚𝑜𝑑𝑎𝑙𝑖𝑡𝑦 ∼ ℎ𝑒𝑎𝑟𝑡_𝑟𝑎𝑡𝑒 + 𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛_ + 𝑝ℎ𝑜𝑛𝑒_𝑢𝑠𝑎𝑔𝑒 + 𝑎𝑚𝑏𝑖𝑒𝑛𝑡_𝑛𝑜𝑖𝑠𝑒
+𝑡𝑖𝑚𝑒_𝑜 𝑓 _𝑑𝑎𝑦 + 𝑑𝑎𝑦_𝑜 𝑓 _𝑤𝑒𝑒𝑘 + 𝑑𝑎𝑦_𝑖𝑛𝑡𝑜_𝑠𝑡𝑢𝑑𝑦 + (1|𝑠𝑢𝑏 𝑗𝑒𝑐𝑡_𝑖𝑑) .

(2)

For modality choice, the main effect of wrist AUC was significant,
with 𝛽 = .19 (𝑆𝐸 = .02, 𝑝 < .001). This reflects an increase in speech
interactions under higher wrist movement. The main effect of heart
rate was significant, with 𝛽 = .05 (𝑆𝐸 = .02, 𝑝 = .05). This reflects
an increase in speech interactions under higher heart rate. The effect
of location is significant, with 𝛽 = .74 (𝑆𝐸 = .05, 𝑝 < .001). This
reflects an 75% increase in speech interactions when participants
were at home compared to not at home. The effect of ambient noise
(detecting “speech” in the environment) was significant, with 𝛽 =

−.16 (𝑆𝐸 = .03, 𝑝 < .001). This indicates lower speech interactions
when detecting speech or conversation noise in the background,
compared to silence. The effect of ambient noise (detecting noises
other than “speech” in the environment) was significant, with 𝛽 =

.01 (𝑆𝐸 = .03, 𝑝 = .02). This indicates slightly higher chance of
speech interactions when detecting noises other than speech or
conversation noise in the background, compared to silence. This
is because the majority of noises detected in this case are noises
coming from activity of the wrist, such as hand washing. Lastly,
the effect of day into study was significant, with 𝛽 = −.11 (𝑆𝐸 =

.02, 𝑝 < .001). This reflects a decrease in speech interactions as the
study progresses. We observed no statistical significance for other
variables.

For response rate, the main effect of heart rate was significant
with 𝛽 = −.26 (𝑆𝐸 = .09, 𝑝 = .006). This reflects a decrease in
response under higher heart rate. The effect of location is significant
(“Home”), with 𝛽 = .34 (𝑆𝐸 = .16, 𝑝 = .03). This reflects an increase
in response when participants were at home. The effect of afternoon
𝛽 = −.23 (𝑆𝐸 = .1, 𝑝 = .05) and evening 𝛽 = −.36 (𝑆𝐸 = .2, 𝑝 = .001)

were significant, indicating that participants were more likely to
respond to the prompt in the morning compared to later in the day.
We observed no statistical significance for wrist AUC, phone usage,
detecting speech or other noises in the background, weekday and
during night time.

6.2.2 How contextual variables and modality choice influences in-
terruption and interaction burden of 𝜇EMA prompts. Based on the
thematic analysis, we identified two major burdens associated with
our system (Table 5): the interruption burden and the interaction
burden. We further identified two different sub-categories associ-
ated with the interruption burden (cognitive and social burden) and
three associated with interaction burden (physical, cognitive, and
social burden) (Table 5).

Interruption burden refers to the burden produced by the
𝜇EMA reporting cue. While the interruption burden could remain
the same for both modalities of 𝜇EMA, the level of burden depends
on the in-the-moment context of the participants. There are two dif-
ferent aspects to the interruption burden. The cognitive interruption
burden ( cognitive interruption ) occurs when participants re-
ceive a prompt during a cognitively engaging activity: (e.g.,“I am in
complete zone like for most of the [computer] games. For an example
like when crucial [moments] and the watch vibrate, I actually get
irritated.” [P14]). The social interruption occurs when participants
are in a public setting or around other people, and the prompts
break the flow of the conversation or draw attention in a quiet
public space ( disturbing others ).

Interaction burden refers to the burden perceived when partic-
ipants interact with the 𝜇EMA system. The interaction burden can
vary based on the participants’ contextual state andmodality choice.
Participants experienced a physical interaction burden when they
brought their hand close to their mouthwhen speaking to the watch,
or when they used one hand to tap/draw on the watch face during
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Table 4: Associations of contextual variables with modality choice and prompt response. We used a mixed-effects logistic
regression with random intercept for both experiments. In the touch vs. speech model, we set “touch” to be the reference factor.
In the response vs. non-response model, we set “non-response” to be the reference factor. Coefficient converted to an odds ratio
(OR) shows how much the odds of an outcome change with a one-unit increase in the predictor, where OR > 1 means higher
odds, and OR < 1 means lower odds. ** p-value < .001, * p-value < .05.

𝑃𝑠𝑝𝑒𝑒𝑐ℎ 𝑃𝑟𝑒𝑠𝑝𝑜𝑛𝑑𝑒𝑑Variables
OR 95% CI OR 95% CI

Heart rate 1.05 ** ▲ 1.0-1.11 0.76 ** ▼ 0.63-0.93
Movements Wrist AUC 1.22 ** ▲ 1.15-1.28 1.0 0.85-1.17
Location Home 2.05 ** ▲ 1.84-2.28 1.41 * ▲ 1.01-1.98
Phone usage Phone in use 1.06 0.95-1.17 1.13 0.8-1.6
Ambience noises Speech 0.83 ** ▼ 0.78-0.88 0.91 0.76-1.11

Other noises 1.07 * ▲ 1.01-1.13 1.0 0.83-1.22
Time of day Afternoon 0.96 0.86-1.07 0.79 ** ▼ 0.53-1.16

Evening 0.93 0.81-1.05 0.69 ** ▼ 0.45-1.06
Night 2.04 0.57-7.34 0.03 0-inf

Day of week Weekday 0.97 0.87-1.08 1.17 0.84-1.62
Day into study 0.89 ** ▼ 0.84-1.93 0.83 ** ▼ 0.74-0.92

a touch interaction. Participants commented that the physical inter-
action burden tended to be higher for touch input when they were
moving ( movement/activity ), or when their hands were busy
( hand availability ) (“since [...] my hands are busy, I won’t tap”
[P1]). Participants’ reactivity to the prompt can cause unneces-
sary physical interaction burden, which might warp the perceived
interaction time of the prompt. Interestingly, we found that partici-
pants disagreed over the perceived interaction time between the
speech and touch input. Six participants mentioned that speech is
noticeably faster (“I feel it’s [speech] a faster process.” [P20]). Yet,
five participants believed one-tap interaction was faster (“I click
the button I’m standing or walking most of the time, so it’s faster.”
[P14]), since they already have an intuition to look at the watch’s
notifications (“when it [the watch] vibrates [sic] , it’s human nature
to then see the watch ” [P14]). The intuition of looking at the watch
screen or bringing the watch close to the mouth when a prompt
occurs can influence participants’ perception of how long the in-
teraction takes, which could affect modality choice. The cognitive
interaction burden refers to the mental effort needed to respond to
the prompt. Participants raised two major cognitive interaction bur-
dens with 𝜇EMA. The first was their mental bias/uncertainty
about what to report (“I do agree that having the options [on the
screen] and responding to that lessens the cognitive load because then
I’m like, oh, these are my options.” [P10]) and the quality of their
self-report (“I felt like what I said may not be caught by the system
itself [because of] my accent cannot be caught by the system. That
could potentially lead to a mislabeling.”[P12]). The second cogni-
tive interaction burden was the repetition fatigue produced
by consecutively giving the same labels over a long period of time.
While our daily burden survey did not capture the interruption
burden from prompt frequency, our qualitative evaluation from
the exit interviews show that 11 (55%) participants reported the

repetitive labeling over time as the primary source of burden (not
the prompt frequency), seven (35%) expressed a desire for longer
intervals between prompts, and two (10%) reported no concerns
about prompt frequency. This implies that the repetition fatigue
could be related to (or potentially caused by) the intense prompt-
ing interval of our study (“You have to give multiple answers of the
same activity [...] For example, you are using your laptop for an hour
straight, then once every 5 minutes, you have to give [...] 10 similar
prompts” [P8]). Finally, the social interaction cost refers to their
social discomfort of the interaction, such as being considered
rude to interact with the watch during a conversation or a meeting
(“In public, I feel like when you look at the watch and tap, it’s sort of
rude. Like it looks like you’re responding to a message or something.”
[P8]; “You know close [intimate] conversations, at that time I will tap
instead of speak.” [P1]).

6.3 RQ3: Examine the characteristics and
potential utility of labels collected using
multimodal 𝝁EMA

We collected 11,320 labels from the field study. For the speech self-
reports, we manually listened to all audio recordings collected from
the 𝜇EMA prompts and extracted the posture, activity, and context
labels from each self-report. We grouped each self-report into one
of the five (not mutually exclusive) categories:

• Singleton posture: self-report only containing posture label —
no activity included

• Singleton activity: self-report only containing activity label
— no posture included

• Posture and activity: self-report containing both posture and
activity



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Le et al.

Table 5: Factors influencing participants’ response rate and modality choice. The full definition of the codes are available in
Appendix D.

Type of burden Excerpts from exit interviews

Interruption Social Disturbing others [P20] “When there are classes, it could be disturbing during class for
others nearby, like sitting next to you, [. . . ] probably the professor
would also not be, you know, like willing to have a vibration during
class.”

Cognitive Cognitive interruption [P21] “I used to try and just mute it in the class because it was just
that I wanted to concentrate there. So every five minutes it’s not just
productive to [respond] between the lecture.”

Interaction Physical Hand availability [P16] “Whenever, let’s say I’m cooking at that time my hands are dirty,
or if I’m cleaning or something like that, then my hands are dirty. So
a vibration just occurs on my hand and I would speak to the prompt
like ’standing cooking.”’

Movement/activity [P7] “I think that plays into it for sure, like walking the dog or doing
dishes or, you know, playing with the dog out in the yard or something
like that. If I was up moving around then I would. It’s easier. It’s
certainly a lot easier to respond verbally.”

Reactivity [P10] “Intuitive like having a smartwatch and when you have notifi-
cations and you just want to look at the screen or respond or see what
the notification is.”

Cognitive Mental bias/uncertainty [P2] “Oh, I’m concerned over the data variety basically. So I think
from the start if I say like the confusion was like should I say a very
detailed approach of like what I’m doing or the type option of sitting
or something like that.”
[P12] “When I try to tap something wrong, I was told that if I speak to
it before some bits, it might capture the second thing. So I did that, but
I don’t know which one it captured exactly. So there’s no confirmation.”

Repetition fatigue [P8] “Then you just feel a bit silly because you just say the same thing
over and over.”

Social Social discomfort [P20] “If I’m talking to you, I cannot immediately break your flow or
mine [to respond to the prompts]”

• Multiple activities: self-report containing multiple activities
— may or may not contain posture label

• Context included: self-report including contextual informa-
tion (e.g. location)

We present the distributions of categorized self-reports in Table 6.
Because 𝜇EMA is limited to a single-question, single-tap response,
participants can only report activity or posture during touch input,
not both. Quantitative results from the field study show that par-
ticipants tended to choose to report posture over activity in touch
responses (of all touch activity labels, 41% of them are “Walking”).
From the qualitative findings, we identified three major reasons
for this tendency. First, participants might perceive posture labels
as more helpful to the researchers ( mental bias/uncertainty )
(“I think the posture is given first priority more than the activity,
right? Because that’s how the audio cues [instructions for the speech
input] are. First is the posture then activity.” [P17]). Second, par-
ticipants expressed hesitation in searching for activity because
there was no guarantee that the label was present in the system
( mental bias/uncertainty ) (“Regarding writing, the main issue
was that I didn’t know what are the exact all categories of things
that’s available to me.” [P14]). Finally, participants reported tapping

on whatever options were closest to their activity/posture that ap-
peared on the first screen and could be answered with a simple tap
( reactivity ) (“When you’re in a hurry, you just look at the screen
and then tap on whatever most relevant” [P16]). These findings show
that the interaction cost affects compliance, modality choice, and
the content of participants’ responses.

To further understand the characteristics of the labels collected
from the field study, we manually categorized each label into 10
high-level categories. Additionally, for each self-report, we labeled
it as either “macro-label” or “micro-label.” “Macro-labels” are high-
level posture and activity labels (e.g., “sitting,” “standing,” “cooking,”
“cleaning,” “grooming”). “Micro-labels” are either 1) macro-labels
with more context that could potentially influence the sensing sig-
nal (e.g., “lounging” (a form of “sitting”), “walking and carrying
groceries”) or 2) a micro-activity of a “macro-label” (e.g., “chopping
vegetables” vs. “cooking,” “applying lotion” vs. “grooming”). Differ-
ent HAR datasets/models might focus on detecting or collecting
data about macro-labels [56, 93, 115] or micro-labels [1, 2, 15, 100].
Micro-labels can also potentially help debug HAR models, by pro-
viding additional contexts that could influence the signal quality
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Table 6: Distribution of self-reports (% (count)) categorized into five categories based on their contents/labels, sorted by modality.
Participants can only report either posture or activity in the touch input.

Modality Singleton posture Singleton activity Posture and activity Multiple activities Context included

touch 59.5% (2980) 39.5% (2130) — — —
speech 19.6% (733) 19.4% (723) 46% (1717) 2.2% (84) 6.5% (241)

(e.g. “standing” vs. “standing and washing dishes”). Table 7 shows
the distribution of reported macro-labels and micro-labels.

We categorized the self-reports after completing the data collec-
tion period. The categorization process required significant time
to parse through and consolidate the list of labels. In HAR data
collection studies, however, annotation schemes are likely deter-
mined beforehand. After-the-fact label cleaning does not enable
real-time feedback or real-time training/monitoring of HARmodels.
To show the potential for automatic real-time label extraction, we
report the results from two tasks: 1) automatic speech recognition
(ASR) on the audio recordings collected from the field study, and
2) automatic mapping from users’ self-reports to a pre-determined
list of ADL labels used by two publicly available HAR datasets.

For the ASR tasks, we customized a commercial ASR model,
Google Cloud speech-to-text v1. We used model adaptation to im-
prove the accuracy of the model and tune the model to recognize
targeted word/phrases (e.g., “sitting” is recognized more often than
“setting” or “city”)3. The watch sent the audio recordings to Fire-
base and retrieved the transcription on the watch. Due to the un-
predictability of network/cellular connections, the ASR process
was not guaranteed to be completed in real-time. If there was no
network/cellular connection on the watch, the system would stop
transcribing to avoid battery drain. To evaluate the usability of
ASR, we followed a similar evaluation process as the prior work
on audio-𝜇EMA [59]. A human annotator transcribed the audio
recording manually to extract the posture/physical activity labels
from the recordings. If all posture/activity/context labels were pre-
sented in the ASR output, that result was classified as a “correct”
ASR transcription. On average, the accuracy of the ASR was 85.9%
(𝑆𝐷 = 5.9 between subjects), significantly higher than the accuracy
observed in prior work on audio-𝜇EMA that used off-the-shelf ASR
(20-25% accuracy) [59]. Although this can be attributed largely to
the changes made to the ASR model, participants’ bias and un-
certainty about the audio quality could potentially lead to overall
better audio recordings collected (e.g. participants not using speech
input in noisy environment, or participants with heavy accents
opting to use touch input).

To evaluate the potential for automatic mapping of labels to a
target set of labels, we used an open-source large language model
(LLM), llama3-8b [105], and prompted it to map the participants’
self-report open-ended labels to two different label lists used by
large ADL HAR datasets. By leveraging the LLM’s embedded com-
mon sense reasoning about relationship between concepts, we hope
it can manage the variability in participants’ self-reports and im-
prove the mapping to structured label sets [80]. CAPTURE-24 is a

3https://cloud.google.com/speech-to-text/ondevice/docs/model_adaptation

large scale wrist-worn accelerometer activity dataset collected in-
the-wild [14]. Pirsiavash and Ramanan (P&R) is an egocentric cam-
era activity dataset collected in a lab-based setting [81]. The label
list used in CAPTURE-24 consists primarily of high-level (macro-
labels), while the annotation scheme in the P&R dataset is more
detailed and descriptive (micro-labels) 4. The P&R dataset, however,
only contains home-based activities, while the CAPTURE-24 an-
notation scheme covers activities outside the home (e.g., “vehicle,”
“walking”). If the dataset label list did not contain basic postures
(“sitting,” “standing,” “kneeling,” “bending over,” “lying”) or “walk-
ing,” we added those labels to the label list. We also added “other” as
a category. We include the list of labels in both annotation schemes
we used in our experiments in Table 8.

For each self-report collected from the participants, we ran a
prompt through llama-3 (see Appendix B) to obtain the mapping of
the raw self-report response to the respective annotation scheme.
One research team member went through the same process man-
ually and we compared the results to that of the LLM. Another
research team member went through the same mapping process on
a subset of the labels (400/11,320; 3.5%). The inter-rater reliability
rate (Cohen’s kappa) between the two annotators was 𝜅 = 0.99,
which indicates substantial agreement between annotators. We
identified three common mistakes made by the LLM:

• Wrong mappings refer to obvious mistakes made by the LLM
(e.g. “standing” is mapped to a “walking” label).

• Inferences refer to instances when the LLM tries to infer
the mapping from the self-report (e.g., “doing homework” is
mapped to “sitting+using computer” (P&R)).

• Made-up labels refer to instances when the LLM mapped the
self-report to a non-existant label (e.g., “grooming”).

Figure 7 shows the distribution of correct mappings and mistakes
made by the LLM in the automatic label mapping task. Compared
to a human annotator, the LLM has an accuracy of 78.1% and 67.2%
for the two annotation schemes. We found that that the distribution
of errors between two data set is significantly different (𝜒2 (3) =
46.5, 𝑝 < .001). We noticed that the LLM made up significantly
more labels using the P&R label list than the CAPTURE-24 list
(8.6% vs. 0.8% made-up labels). We believe this was because the
P&R label list only contains home activities, so the LLM made up
new labels (hallucinations) for self-reports of activities outside the
home. For both annotation schemes, the LLM was able to make
logical inferences (9.9% and 15.6% inference errors). Even though
the inferences might not be always correct in naturalistic settings
(e.g., “using computer” might not always associated with “sitting”),
these inferences can be useful for future system designs that allow
follow-up questions.
4In this experiment, we used the mapped labels that the authors of CAPTURE-24 used
when training/evaluating HAR models [14].

https://cloud.google.com/speech-to-text/ondevice/docs/model_adaptation
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Table 7: The distribution of reported macro-labels and micro-labels.

Category Macro-labels Micro-labels

POSTURE (5430) sitting (3842), standing (1193), bend over
(14), kneeling (3), crouching (7), lying (368)

lounging (1), hunching (3), ...

IN TRANSIT (1069) walking (859), stairs (10), traveling (1), driv-
ing (26), ...

going to station (1), riding train (3), going to the station
(1), riding electric scooter (1), biking (2), talking/driving
(1), waiting for the bus (1), ride plane (1), ...

CHORES (264) cooking (178), do chores (13), doing laun-
dry (4), cleaning (47), ...

folding stuff (1), carry stuff (2), dusting (1), washing stuff
(1), walking/cleaning kitchen (1), putting food away (1),
pick up stuff (1), watering plants (2), ...

WORK/SCHOOL (279) writing (6), doing work (2), meeting (152),
working (84), studying (7)

using whiteboard (1), using the whiteboard (1), convers-
ing/writing on whiteboard (1), writing on whiteboard
(1), doing an assignment (1), ...

FOOD/DRINK CONSUMP-
TION (520)

drinking (13), eating (170) walking/eating (1), eating dinner (2), eating breakfast (2),
chopping vegetables (1), drinking water (13), ...

HOBBY (176) doing crafts (2), shopping (32), reading (35),
playing game (31), ...

playing guitar (3), playing frisbee (1), playing video
games (15), reading book (18), ...

USE ELECTRONICS (1744) using computer (94), using phone (85),
watch contents (26), use tablet (12), ...

watch a movie (1), working on computer program (1),
watch tv (67), use phone/waiting for train (1), typing (50),
...

SELF-CARE (87) use bathroom (9), grooming (2), ... wash hands (4), showering (4), washing hands (9), brush
teeth (2), taking off socks (1), combing hair (1), wiping
face (1), skincare (1), ...

PUTTER AROUND (34) wake up (1), get ready to walk (1), ready
for sleep (2), ...

scratching head (1), locking door (1), climb down ladder
(1), charging tablet (2), opening drawer (1), unlocking
door (1), ordering food (1), ...

LOCATION (93) at park (4), around campus (3), to the bus (1), to college (2), in the kitchen (2), around the house (2),
in the office (2), outdoors (1), bus connection (1), ...

Self- report using multimodal μΕΜΑ

speech input ("I'm sitting and using computer")

touch input ("Computer (Using)")

ASR transcribed speech 
input (accuracy = 85.7%)

LLM maps self- report to 
predetermined label list

"I'm sitting and 
using computer"

sitting+using computer 
P&R (accuracy = 67.2%)

sitting
CAPTURE-24 (accuracy = 78.1%)

Figure 6: Our proposed pipeline for real-time automatic label extraction.

7 DISCUSSIONS AND FUTUREWORK
We have extended the line of work in 𝜇EMA and audio-𝜇EMA by
combining two input modalities, touch and speech, into a novel type
of 𝜇EMA: multimodal-𝜇EMA. In this section, we discuss the impli-
cations of this work for future deployments of multimodal-𝜇EMA;
design implications for context-aware, multimodal prompting sys-
tems; and how our method can be used in a real-time human-in-
the-loop activity recognition system.

7.1 Usability and Challenges of Deploying
Multimodal 𝝁EMA in-the-wild (RQ1)

At 15-minute prompting intervals, prior works with touch-only
𝜇EMA on a smartwatch reported response rates of 80-90% [43, 85],
and speech-only 𝜇EMA reported a response rate of 85-90% [38].

Recent work on speech-only 𝜇EMA, at a five-minute prompting
interval, demonstrated response rates of 65-68% [59]. Despite dis-
rupting participants approximately three times more than standard
𝜇EMA, our field deployment showed that participants were able to
respond to our proposed multimodal 𝜇EMA prompts with a high
response rate of 72.4%. Compared to EMA studies of similar dura-
tion (7 days) [111], which report an average response rate of 79%,
we achieved a comparable level of participant engagement while
delivering 10–20 times more prompts (6 vs. 80–120 prompts per
day). This shows the promise of using multimodal 𝜇EMA implemen-
tation on the smartwatch to collect data at high temporal density
while maintaining a good response rate.

The majority of participants (55%) expressed it was not the fre-
quency of the prompts, but the repetition of reporting the same
labels and the mental load to come up with a response that posed
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Table 8: List of labels in datasets used for the automatic self-report to label mapping. Labels with an asterisk (*) were added by
our research team.

CAPTURE-24 [14] Pirsiavash and Ramanan [81]
sleep, sitting, standing, lying*, kneeling*, bend over*, household-
chores, manual-work, walking, mixed-activity, vehicle, sports,
bicycling, others*

sitting*,standing*, lying*, kneeling*, bend-over*, walking*, comb-
ing hair, make up, brushing teeth, dental floss, washing
hands/face, drying hands/face’, enter/leave room, adjusting ther-
mostat, laundry, washing dishes, moving dishes, making tea,
making coffee, drinking water/bottle, drinking water/tap, mak-
ing hot food, making cold food/snack, eating food/snack, mop-
ping in kitchen, vacuuming, taking pills, watching tv, using
computer, using cell, making bed, cleaning house, reading book,
using mouth wash, writing, putting on shoes/socks, drinking
coffee/tea, grabbing water from tap, other*

Figure 7: Distribution of correct mappings and mistakes made by the LLM.

significant cognitive burden [59, 65]. This suggests the possibility
of a transition-based prompting mechanism where the system only
prompts participants when it detects a change inmovement/activity
[5, 40, 62, 63, 76]. However, determining the optimal moment to
prompt while balancing researchers’ information needs [62] and
participants’ burden [71] requires further investigation.

Another major usability challenge we observed during our study
was participants’ reactivity to the watch prompt. While in prior
work Ruan et al. showed that speech input tends to be faster than
touch input [89], our qualitative findings show that participants
disagreed about which interaction is faster – speech or touch. Many
participants expressed that their ingrained automatic response to a
watch prompt was to look at or touch the watch face, even in speech
interaction where they were instructed not to. Training people out
of this habit is difficult. One possible solution could be to design
distinct haptic/auditory cues for the different 𝜇EMA prompts. Prior
researchers have studied different types of haptic cues and tying
them to specific actions/messages [3, 86]. Another option would be
to add a new device form factor that only has an audio interface
and has become quite popular – earables [91]; these devices may
prevent participants from looking at the watch screen. Several prior
studies have successfully deployed speech-based EMA on earbuds
or headsets [9, 59]. Adding additional on-body devices that are not

yet socially acceptable in all situations, however, could increase
perceived burden by drawing unwanted attention from bystanders.

7.2 Disconnection between passive sensing data
and perceived source of burden (RQ2)

From the quantitative analysis of our study (𝐻4), we observed that
higher heart rate, higher wrist movement, and location (at home)
have a positive association with the use of speech interaction. Fur-
thermore, presence of speech in the background has a negative asso-
ciation with speech interaction. These findings indicate that people
were comfortable using the speech interaction while undergoing
high physical activity and movement. Participants were, however,
less likely to use the speech interaction if there was background
speech (suggesting presence of other people). Our qualitative analy-
ses further support these observations, where participants reported
speech input having a lower physical burden, but higher social
and cognitive burden compared to touch input. Furthermore, we
found that higher heart rate, higher wrist movement, phone usage,
weekday, and detecting noise aside from speech in the background
are associated with higher 𝜇EMA response rate. Participants also
are more likely to respond to the prompt in the morning compared
to later during the day. These findings are consistent with prior
work on contextual biases in 𝜇EMA non-response [72, 83].
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We want to highlight, however, that there is still a disconnect
between the passive sensing data and the interaction burdens raised
by our participants [21, 35]. This semantic gap can hinder the de-
ployment of future context-aware system that attempt to predict
participants’ receptivity to 𝜇EMA prompt [17, 33, 60, 63, 71]. The
contextual variables used in our quantitative experiments are of-
ten proxies to detect physical and social burden (e.g. location and
ambient noises can indicate potential social discomfort , phone
usage might indicate hand availability , wrist movement can
indicate movement/activity ). These contextual variables, how-
ever, do not reveal information about potential cognitive inter-
action/interruption burden, or all situations where hands were
unavailable (e.g., “carrying/moving stuff” or “typing”). Hand avail-
ability and repetition fatigue might be detected using fine-grained
activity recognition models, and using physiological signals to pre-
dict cognitive interruption burden [31]. Burden may exist on
a spectrum (e.g., a work meeting likely imposes a higher social
burden than a casual conversation with a friend), which passive
sensing data may not fully capture. Future systems might auto-
matically measure or estimate burden and explore how it affects
participants’ decision-making. Future work should also investigate
whether a threshold exists at which burden significantly influences
participants’ modality choices.

7.3 Towards real-time human-in-the-loop
activity recognition systems (RQ3)

Our proposed system, multimodal 𝜇EMA, could be useful for real-
time annotation and training of activity recognition models [16, 22,
70, 73]. Its flexible input modalities and open-ended responses per-
mit participants to naturally enter what they are doing via speech
in a way that allows researchers to gather temporally dense and
high-quality labels and subsequently use them to define and tune
personalized HAR models. We explored the characteristics of the
labels for the behavior labeling task and the possibility of future
automation of label extraction. Our findings show that participants
were able to report various activity labels under different contexts
using our system. We also show that by tuning a commercial ASR
and using an open-source LLM we can build a pipeline for auto-
matic label extraction. The LLM performance, however, depends
on the list of labels defined by the researchers. Furthermore, partic-
ipants may have their own mental biases regarding what qualifies
as an “activity” or how to search for one using touch input, high-
lighting the need to co-develop inclusive activity labeling schemes
and feedback mechanisms to guide participants in providing useful
information (which can also reduce their mental load). In this work,
we demonstrate viability of mapping what people report using mul-
timodal 𝜇EMA onto desired labels using zero-shot prompting of the
LLM. Future work might improve on this method by fine-tuning
an LLM model to increase accuracy or by including a re-prompting
mechanism to avoid the LLM making up random labels beyond the
pre-defined corpus [23].

It is important to note that participants’ mental biases could lead
to lower compliance or undesirable reporting patterns for speech
interaction (such as overly verbose self-reports or avoiding using
speech input), resulting in lower quality of the labels. A real-time
feedback loop to combat this bias would depend on the accuracy of

the ASR model. Despite the successful use of model adaptation to
increase ASR accuracy (86% accuracy), there is still a lot of room
for improvement, and the system still requires human supervision
to extract all the labels post-hoc. Furthermore, in our current im-
plementation, the ASR model needs a network connection to run,
and the network is not always available. We want to emphasize
that adding the same confirmation screen used for touch input
may not be the optimal solution. Even with a stable network to
run the ASR model, the latency of ASR could be too long for the
interaction to be considered a “microinteraction.” If the ASR misrec-
ognizes input, it can further increase participant frustration. Instead
of using in-the-moment feedback, an end-of-day summary report
[42] or making the screen disappear upon detecting the “end-of-
speech” could serve as sufficient confirmation mechanism. Future
works could further explore the effectiveness of different feedback
mechanisms.

8 LIMITATIONS
There are some limitations of this work. Many EMA studies only
run for a week [20, 97], and thus the seven-day study results re-
ported here provide a baseline for multimodal 𝜇EMA use. In this
pilot study, a member of the research team checked in daily with
participants using text messages. These daily messages built rap-
port with participants in this short study period, which can increase
response rate and compliance with the system [29, 74, 107]. Future
studies should assess longer-term, and even longitudinal, use and
compliance. The second limitation is that our study populations is
skewed towards young male adults who are facile with technology
(55% participants self-reported they were very familiar with and
regularly used tracking applications on a smartwatch). Our sam-
ple size also skewed towards non-Hispanic Asian students, which
limits the generalizability of our findings. Future research should
study reactions to multimodal 𝜇EMA among other groups. A an-
other limitation of this work resulted from hardware restrictions of
the Pixel Watch 2; due to the computationally-intensive on-device
audio processing and five-minute prompting intervals, the smart-
watches running software had a battery life of 12-13 hours before a
recharge was required. Future studies could turn off the ambient
noise classifier to extend battery life. Furthermore, newer watches
continue to have better battery capacity 5. Due to a restriction from
Google, our watch application required a network connection to
run the ASR model; this requirement prevented us from implement-
ing real-time feedback to participants during a speech input. We did
not find a significant quantitative association between perceived
burden and the day in study (H2). This suggests participants might
sustain our system over time without increased burden, though our
use of unvalidated burden scale may have influenced the results.
Future work should look into using other additional measurement
for burden/workload, for example the user burden scale or NASA-
TLX scale [90, 102]. Our qualitative findings suggest that desire for
feedback influenced modality preferences for some participants. A
useful future extension to the system might add feedback to the
speech responses, either in real-time or via an end-of-day report.
Finally, due to the scope of this paper, we did not assess the validity
of the labels collected by the system. Given our promising feasibilty

5https://blog.google/products/pixel/google-pixel-watch-3/

https://blog.google/products/pixel/google-pixel-watch-3/
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results, in future work we seek to investigate the usability and
validity of the annotations collected using 𝜇EMA system, either
through an egocentric camera, or using data from the watch sensors
[10, 32, 84, 109].

9 CONCLUSION
In this paper, we present a novel data collectionmethod, multimodal
𝜇EMA, by combining speech and touch input on a smartwatch. We
conducted a seven-day free-living study and examined the usability
and feasibility of an in-the-wild deployment of our system. De-
spite the temporal density of the prompts (once every 5 minutes),
participants were highly engaged with our system, with an av-
erage response rate of 72.4%. We quantitatively and qualitatively
identified different factors affecting response rate and modality
choice, investigating the characteristics and usefulness of the labels
recorded from the field study study. Our field deployment shows
the potential of leveraging multimodal 𝜇EMA for collecting useful,
rich posture and physical activity labels, which can potentially be
integrated within a real-time activity recognition system.
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A Appendix A: Activity level estimation
To decide which activities to display on the screen, we use a rule-
based, heuristics algorithm. We assigned each activity in the list
into one level: Sedentary, Moderate and Vigorous. The categorization
and the list of activities are included in the supplementary mate-
rials. We determined participant’s activity level using heart rate
and accelerometer data before a prompt popped up (see Table 9).
We filtered the list of activities that fell into the detected physical
activity level, and we displayed the three activities that were most
reported by the participants. If there were ties, we displayed the
activities based on alphabetical order.

Table 9: How we determined physical activity levels using
heart rate (HR) and wrist accelerometer data (AUC unit).

Activity Level Heart rate (HR) and AUC values

Vigorous HR > 150 OR AUC >= 6000
Moderate NOT Vigorous

AND (HR >= 105 OR AUC >= 2000)
Sedentary HR < 105 AND AUC < 2000

B Appendix B: Prompts used for LLM
experiment

To run the LLM experiment, we used the following prompt, which
is tailored for the CAPTURE-24 label list. To run the experiment
with the P&R label list, we simply replaced the list of labels (see the
italicized text).

This is what the person reported doing:
[participants’ self-report].
Map their self-report to one or more of the
following labels:
sleep,
sitting,
standing,
lying,
kneeling,
bend over,
household-chores,
manual-work,
walking,
mixed-activity,
vehicle,
sports,
bicycling,
others.
If the self-report fits multiple labels,
seperate them with a backslash (such as
sitting/household-chores, standing/sports,
sitting/vehicle, ...). If the self-report doesn’t
fit any of the labels, return ’others’. Give a
single answer (no explanation, limited prose). Do
not invent new labels.

The prompt for the P&R experiment is identical, except for the
activity list is replace with these activities: sitting,standing, lying,

kneeling, bend-over, walking, combing hair, make up, brushing
teeth, dental floss, washing hands/face, drying hands/face’, en-
ter/leave room, adjusting thermostat, laundry, washing dishes, mov-
ing dishes, making tea, making coffee, drinking water/bottle, drink-
ing water/tap, making hot food, making cold food/snack, eating
food/snack, mopping in kitchen, vacuuming, taking pills, watching
tv, using computer, using cell, making bed, cleaning house, reading
book, using mouth wash, writing, putting on shoes/socks, drinking
coffee/tea, grabbing water from tap, other

C Appendix C: Results of individual items in
the SUS survey

Table 10 shows the results of individual SUS items.

D Appendix D: Themes, Codes and definitions
(qualitative analysis for participant’s
perceived burden)

Table 11 shows the definitions of the themes mentioned in the
qualitative analysis (Section 6.2.2), as well as exampled generative
codes.
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Table 10: Individual SUS questions with mean and standard deviation of the score. The scale for grading is from 0-4. The table
shows the raw scores recorded in the SUS response (“Strongly Agree” is graded as 4, and “Strongly Disagree” is graded as 0). For
the even numbered questions (marked with * in the table), the raw scores are reverse graded (by subtracting the score from 4)
— so lower score on these question implies high usability. The final SUS score is calculated by summing up all the grade for
individual questions, and multiplying by 2.5.

Question Mean SD

I think that I would like to use this system frequently. 2.73 1.10
I found the system unnecessarily complex* 1.2 0.94
I thought the system was easy to use. 3.27 0.80
I think that I would need the support of a technical person to be able to use this system.* 0.47 0.74
I found the various functions in this system were well integrated. 3.00 1.00
I thought there was too much inconsistency in this system.* 1.13 0.92
I would imagine that most people would learn to use this system very quickly. 3.33 0.82
I found the system very cumbersome to use.* 1.07 0.88
I felt very confident using the system. 3.27 0.70
I needed to learn a lot of things before I could get going with this system.* 0.6 0.74

Table 11: Definitions of the codes about participant’s perceived source of burden emerged from the qualitative analysis.

Type of burden Example codes (count) Definition

Interruption Social Disturbing others high perceived social dis-
ruption (10)

Situations where the prompting cue causes dis-
ruptions for people around the participants

Cognitive Cognitive interruption prompt during activity
transition is cognitively
burdensome (3), annoyed
with prompts during fo-
cus time (5)

Situations where participants claimed the
prompts interrupted them from a cognitively
engaging task

Interaction Physical Hand availability speech preferred when
hands are busy/moving
around (14)

Situations where participants’ hand movement
affected their modality choice or non-response

Movement/activity speech was helpful to
avoid looking at watch
screen during activity (2)

Situations where participants’ activity level af-
fected their modality choice or non-response

Reactivity instinct to look at screen
during watch prompt (7),
tendency to bring watch
hand near mouth for
speech (2)

Situations where participants’ reaction to the
prompt affected their modality choice or non-
response (e.g., a change in body movement,
bringing their hand close to their mouth, look-
ing/glancing at the watch)

Cognitive Mental bias/uncertainty hard to come up with re-
sponse for speech (6), au-
dio quality concerns (20)

Situations where participants expressed
doubt/uncertainty about what to report or the
quality of the recorded label

Repetition fatigue repetition is burdensome
(11), increase time be-
tween prompts (7)

Situations where participants complained about
the repetition of the same label

Social Social discomfort study participation de-
tails not shared in pro-
fessional settings (2), non
speech inputs preferred
around others (5)

Situations where answering to the prompting
caused participants to be uncomfortable around
other people
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