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Figure 1: Activity recall timelines (ARTs) can encode uncertainty in activity recalls for better sensemaking while conveying the data’s underlying
validity. We conducted a mixed-method user study to evaluate different temporal and categorical uncertainty encodings in ARTs.

ABSTRACT

Encoding uncertainty in timelines can provide more precise and informa-
tive visualizations (e.g., visual representations of unsure times or locations
in event planning timelines). To evaluate the effectiveness of different
temporal and categorical uncertainty representations on timelines, we
conducted a mixed-methods user study with 81 participants on uncertainty
in activity recall timelines (ARTs). We find that participants’ accuracy is
better when temporal uncertainty is encoded using transparency instead
of dashing, and that a participant’s visual encoding preference does not
always align with their performance (e.g., they performed better with a less-
preferred visual encoding technique). Additionally, qualitative findings
show that existing biases of an individual alter their interpretation of ARTs.
A copy of our study materials is available at https://osf.io/98p6m/.

Index Terms: Timelines, Uncertainty Visualization, Evaluation Study.

1 INTRODUCTION

A labeled list of an individual’s daily activities can be used to monitor phys-
ical activity habits, sleep patterns, and sedentary behavior levels. Addition-
ally, accurate daily activity depictions can be used for changing behavioral
patterns [25], self-reflection [4], understanding a population’s time usage
(e.g., the American Time Use Survey [1]), and training human activity
recognition models. However, collecting an accurate depiction of an indi-
vidual’s activities is difficult and is oftentimes done through a “self-report
activity recall:” an individual reporting their activities via handwritten or
digitized logs (e.g., [18]), conversations with researchers, frequent surveys
(e.g., [15, 26]), or custom mobile or web applications (e.g., [23]). Because
self-report activity recalls are issued after the fact and may ask about a
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specific point in time (e.g., “what were you doing between [time t1] and
[time t2]?”), they are subject to recall bias [26, 23] that may affect the
duration (temporal uncertainty) and/or the type (categorical uncertainty)
of a recalled activity. Although activity recalls are often interpreted from a
textural or tabular format, activity recall timelines (ARTs) allow for better
pattern identification and sensemaking of the underlying data [20, 8, 29, 13,
27]. To convey the validity of each activity in the recall, ARTs must encode
the temporal or categorical uncertainty present in the original activity recall.

ARTs (shown in Fig. 2) are only one example in which encoding
uncertainty may yield more precise and informative visualizations. Travel
planning timelines could encode potential delays or changing destinations,
and historic timelines could encode theorized but unproven events or
people. To study uncertainty encodings in timelines, we investigate four
research questions in the context of ARTs:
RQ1: Is a transparent or dashed time frame more effective in conveying
temporal uncertainty?
RQ2: Is a transparent activity label or sketchy time frame more effective
in conveying categorical uncertainty?
RQ3: How does ART comprehension vary by task and timeline density?
RQ4: Which existing biases or mental models impact ART perception?

We conducted a mixed-method evaluation study for visual uncertainty
encodings on ARTs with 81 participants. Each participant completed an
online survey (quantitative data). In-person participants also participated in
a semi-structured interview (qualitative data). We make two contributions:
1) The results, and accompanying discussion, of our evaluation study
in which we compare the effectiveness and human preference for different
uncertainty encoding techniques on timelines in the context of ARTs.
2) Proposed design recommendations for timelines that encode temporal
and categorical uncertainty.

2 RELATED LITERATURE

Uncertainty representations visually represent uncertainty in the under-
lying data and have heavily focused on data that reflects the probability
of something occurring (e.g., transit arrival time [12] or a hurricane’s
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trajectory [22]). Visualizations have encoded this probability by changing
the granularity of the underlying data [6]; using probability distributions,
both discrete [9, 12] and continuous [21]; and including error bars, fuzzi-
ness, and transparency [14, 21]. Uncertain linear data has been encoded
using dashing, grayscale, and sketchy lines [7]. Uncertainty encodings
in timeline visualizations are an open area of research [10, 24]; ours is
the first work to evaluate sketchiness in timelines. Planning tools incor-
porating temporal uncertainty have been introduced and evaluated, but
the encodings themselves (interval bars and transparency [3] as well as
color, shape, and comparative length [16]) had not been independently
evaluated. In a user study evaluating multiple temporal uncertainty encod-
ings, ambiguation was found to be an effective communicator of temporal
uncertainty but the ideal representation was task-dependent, especially
when underlying probability needed to be communicated [14]. To the best
of our knowledge, no literature proposes or evaluates visual encodings
for categorical uncertainty in timeline visualizations. Further, no work
evaluates both temporal and categorical uncertainty within the same time-
line. Evaluating timeline visualizations often takes into account both
participant performance (quantitative) and perception (qualitative). To
evaluate timelines shape, Di Bartolomeo et al. proposed a framework of
four timeline evaluation tasks: “Compare,” “Find,” “What,” and “When;”
they found linear timelines were best and that task complexity may alter
performance [11]. Temporal uncertainty in timelines has been evaluated
using tasks like “probabilities” (probabilistic estimation) and “start/stop”
(“When” tasks) [14]. These quantitative evaluations used metrics such as
participant accuracy, response time, and confidence [11, 14]. To extend on
prior research, our work evaluates different binary temporal and categorical
uncertainty visualization both quantitatively, using similar metrics as [14]
and [11], and qualitatively to provide insight on the impacts of underlying
data/application on understanding and use of uncertainty in timelines.

3 METHODOLOGY

3.1 Stimuli Design
We designed the ARTs using two rounds of an iterative design process;
each round consisted of internal brainstorming, refining designs with
visualization experts, and pilot testing with non-data visualization experts.
During each brainstorming phase, we proposed or modified uncertainty
representations affecting the endpoint glyphs, time frames, and activity
labels. During pilot testing, we qualitatively evaluated every representation
as encoding each categorical and temporal uncertainty. Ultimately, based
primarily on pilot testing feedback, we chose four uncertainty encodings
to evaluate. Example stimuli are shown in Fig. 2.

ART Design

The activity occurred.

The activity might have occurred.

ActivityActivity
 Label

Time Frame

Endpoint Glyph

Note: Uncertainty is binary and can 
be encoded using any of the three 
visual components in an ART.

If true, was the activity occurring? 

1. A Sparse Stimulus

2. A Dense Stimulus

Figure 2: Design of ARTs and example stimuli. Left: visual components
in ARTs. Right: a sparse (top) and dense (bottom) stimulus.

We evaluated two encodings for temporal uncertainty: TTransparent
and TDashed (Fig. 1). We chose TTransparent because ambiguation has
performed well to express temporal uncertainty [14] and our pilot testers
qualitatively preferred TTransparent and TDashed to other options. Both
were visually encoded by changing the time frame shape (i.e., stroke style)
and endpoint glyphs’ closure (i.e., open/filled), and followed the intuition
that temporal uncertainty impacts the activity duration, thus should visually
be represented by the time frame and endpoints. Additionally, we eval-

uated two encodings for categorical uncertainty: CTransparent and CSketchy
(Fig. 1). We chose CTransparent as it was our pilot testers most preferred
intuitive encoding (categorical uncertainty impacts the activity type, visu-
ally represented by the activity label). However, because text is interpreted
differently than other visual elements [28] and some pilot testers missed
the CTransparent encoding at a glance, we chose to include CSketchy (a
highly preferred encoding on the time frame that used a unique channel)
as an encoding for categorical uncertainty but did not alter the endpoints
because the uncertainty is not associated to time. To encode categorical
uncertainty, CTransparent changes the transparency of the activity label and
CSketchy changes the shape of the time frame. Because a recalled activity
may be both categorically and temporally uncertain we chose encodings
that used unique visual channels so they could be visually layered.

We created twenty stimuli by modifying an existing activity dataset
[2]: sixteen containing both temporal and categorical uncertainty and four
without (control stimuli). Half of the stimuli (10) are sparse (contain less
than or equal to five activities) and the remainder (10) are dense (contain
more than five activities).

3.2 Study Protocol
We conducted a mixed methods evaluation study with both in-person
and remote participants balancing the need for both statistical power and
high-quality qualitative data. Participants answered questions during the
online survey about both temporal uncertainty encodings (within) and
only one categorical uncertainty encoding (between).We assigned study
conditions, evaluating CTransparent or CSketchy, in a round-robin fashion
regardless of participation modality.

Participants received 68 questions in the online survey: 4 identical
control questions + 2 conditions * 2 densities * (16 task-based questions).
Within each study condition, the stimuli order was counterbalanced
using a Latin square design to reduce ordering effects. We derived each
question from the four evaluation tasks used to evaluate timeline shape
[11] (“Compare,” “Find,” “What,” and “When”). We modified each task
to be realistic for ARTs (Table 1). Although we designed the online study
to take our pilot testers no longer than 45 min in one sitting, we did not
limit completion time and participants were not penalized if they took
a break. Additionally, we divided the control questions equally between
the two conditions to ensure participant comprehension over time.

Table 1: ART evaluation tasks (following the framework of Di Bartolomeo
et al. [11]), descriptions, and example questions.

Task Description Example Question

“Compare”
Locate the shortest/longest recalled 
activity or explain the relationship between 
two activities in the timeline.

Which activity (or activities) could 
this individual have spent the 
least time doing? 

“Find”
Find the total duration of an activity (that 
may have multiple bouts) in the timeline.

How many minutes could this 
individual have been Using 
Computer? 

“What”
Identify all activities at a specific time or 
within a specific time frame. 

Which activity (or activities) could 
this individual have been doing at 
8:00?

“When” Find the start, stop, or time frame of a 
specific activity.

When could this individual have 
been Walking?

Remote participants completed the online survey via Prolific
(https://www.prolific.com/). In-person participants completed the
online survey alongside a researcher in a think aloud session to explain their
thought process, responses, and impressions during the online survey. Af-
ter completing the online survey, in-person participants were sequentially
shown additional stimuli containing all four uncertainty encodings during
a semi-structured interview. With in-person participant consent, audio
was recorded and transcribed. Remote participants received $10 USD and
in-person participants received $15 USD in gift cards as compensation.

Northeastern University’s IRB approved this research and all partic-
ipants gave consent before participating in our study. We preregistered
our study procedures and analysis plan (https://osf.io/98p6m/).

3.3 Participants and Recruitment
We conducted a power analysis, using pilot testing data, prior to the study,
which yielded a sample size of 68 participants. We aimed to recruit 76
participants (assuming 10% unusable data). Participants were at least
18 years old, not visually impaired, and resided in the United States at
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the time of participation. We recruited participants via Prolific (remote)
as well as via flyers and email (in-person).

We recruited 81 participants, 18 (22%) in-person and 63 (78%) remote.
By self-reported demographics, our participants were approximately split
by sex (39 (48%) were female at birth), aged 18-55+ (40 (49%) were ages
25-34), racially diverse (34 (42%) were White/Caucasian), and highly
educated (56 (69%) had at least an associate’s degree).

3.4 Hypotheses
We tested four hypotheses to address RQ1-3 (Sec. 1). The first two
hypotheses investigate effective uncertainty encodings (RQ1 and RQ2):
H1: Participants are more accurate when transparency on the time frame,
rather than dashing, encodes temporal uncertainty.
H2: Participants are more accurate when transparent activity labels,
rather than sketchy time frames, encode categorical uncertainty.

We hypothesized that participants are more accurate using TTransparent
than TDashed, H1, because ambiguation, which we achieve through
transparency, has effectively encoded temporal uncertainty [14].
Additionally, we hypothesized that participants perform better on
CTransparent than CSketchy, H2, because, although there is no prior work
evaluating categorical uncertainty encodings, our pilot testers qualitatively
preferred CTransparent to CSketchy saying it is more intuitive because it
visually encodes categorical uncertainty on the activity label, the uncertain
element in the recall.

Our last two hypotheses address RQ3 and evaluate the effects of
density and task on perception and understanding of ARTs:
H3: “Compare,” “Find,” and “When,” tasks will be completed quicker
on sparse stimuli, regardless of uncertainty encodings.
H4: “What” tasks will be more accurate than “Compare,” “Find,” and

“When” tasks regardless of density and uncertainty encodings.
We hypothesized that tasks that require navigating the entire timeline

(“Compare,” “Find,” and “When”) will be quicker on sparse ARTs, H3,
because fewer activites are visualized and more cluttered visualizations
result in slower response times [19]. Also, we hypothesized that “What”
tasks will be the most accurate, H4, because they are simpler, do not
require navigating all the activities in the timeline, and evaluation task
complexity may alter response time and accuracy [11].

3.5 Data Analysis and Exclusion of Data
Quantitative Analysis: We used data from the online survey (participant
responses and response time) for hypothesis testing. Responses were
graded as correct or not with no partial credit. We computed accuracy as
the number of correct responses divided by the total number of questions
in that condition.

We tested for normality and evaluated H1, H2, and H3 using one-tailed
t-tests because each hypothesis 1) evaluated a difference between two
groups; 2) was apriori and unidirectional; and 3) was guided by prior
work (in the case of H1 and H3) or pilot testing feedback (in the case of
H2) [17]. We did additional post-hoc analysis of confidence and response
times using one-tailed t-tests. We evaluated H4 with a repeated measures
ANOVA test because it considered multiple design factors. We used the
Benjamini and Hochberg procedure [5] to minimize false discoveries.

We excluded the following data from our analyses 1) a participant’s
responses if they answered any control question incorrectly (11
participants (14%)), 2) response times of in-person participants because
they were asked to think aloud, 3) any questions where greater than
80% of participants answered “Not enough information” or skipped the
question (eight “Compare” questions).
Qualitative Analysis: One author carefully read and coded the transcripts
of in-person interviews inductively. Iteratively, as a group, we discussed
and improved the codes. We derived themes after removing codes outside
the scope of our RQs and merging similar codes.

4 RESULTS

We statistically analyzed the online-survey responses of the 70 (87%)
included participants to address RQ1-RQ3 and thematically analyzed
the transcripts of all 18 (22%) in-person participants to address RQ4.
Unabridged results are reported in our supplemental material.
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Figure 3: Plots for the accuracy (A), response time (B), and self-report
confidence (C) on each encoding. Encodings are shorted for brevity.

RQ1: Temporal Uncertainty Encodings Participants were more
accurate (t(1096.2) = 2.69, p = .004, 95% CI [0.02, ∞]) and confident
(t(1109.5)=2.20, p= .01, 95% CI [0.03, ∞]) on TTransparent than TDashed
(we found no evidence they respond faster); H1 is supported. In-person
participants’ preferences were split between temporal encodings: seven
(39%) preferred TTransparent , eight (44%) preferred TDashed, and three
(17%) had no preference. Three participants (22%) preferred TTransparent
because it was intuitive: “[the time frame] is faded. It’s like there and not
there,” [P2] while only one (8%) preferred TDashed because it was intuitive,
“it’s a little bolder and [...], well, that’s obviously a gap” [P6]. Although
more participants preferred TDashed , encoding preference did not always
align with performance. Twelve (92%) performed better on TTransparent
or as good on TTransparent as TDashed. Only one participant (8%)—who,
interestingly, preferred TTransparent—performed best on TDashed.

For temporal uncertainty, TTransparent was more effective than TDashed .

RQ2: Categorical Uncertainty Encodings Quantitatively, we found no
evidence that CTransparent was better than CSketchy in terms of accuracy,
confidence, or response time; H2 is not supported. Additionally, in-person
participants were split between the encodings: nine (50%) preferred
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Figure 4: Plots of the accuracy (1), response time (2), and self-report confidence (3) for timeline evaluation tasks across stimuli densities.

CSketchy, eight (44%) preferred CTransparent , and one (6%) had no prefer-
ence. Eight participants (44%) thought CSketchy was easier to see: “[it is]
harder to ignore” [P13], but none (0%) thought it was intuitive. In com-
parison, five (63%) who preferred CTransparent believed it was intuitive:
“[the grayed out label] is like, the activity is a little bit unsure” [P5].

CTransparent was a more intuitive categorical uncertainty encoding than
CSketchy, but further evaluation is needed to determine effectiveness.

Because participation modality may have affected the statistical
analysis of RQ1 and RQ2 (Fig. 3), we performed post-hoc two-tailed
t-tests to investigate accuracy, confidence, and response time differences
by uncertainty encoding between in-person and remote participants.
Accuracy using CSketchy (t(8.96)=3.24, p=0.01, 95% CI [3.48, 19.53])
is the only statistically significant factor and can perhaps be attributed
to the demographic differences between the two groups.
RQ3: Timeline Evaluation Tasks and Density in ARTs Although
sparse stimuli contain fewer activities, only “When” tasks were completed
quicker on sparse stimuli; H3 is not supported. Additionally, we found
“Compare” tasks, and not “What” tasks, had the highest accuracy
regardless of ART density or uncertainty encoding (we excluded all but
one “Compare” question from our analysis); H4 is not supported. These
quantitative results (summarized in Fig. 4) can possibly be attributed to
our data exclusion protocols, lack of partial credit, and biases discovered
during the qualitative analysis (handling missingness and interpretation
of linguistic uncertainty).
RQ4: Perception of and Biases in ARTs After merging similar codes,
we categorized the 10 unique codes into four themes, each of which likely
altered ART interpretations and online survey responses.
1) Preconceived Notions of Human Behavior: All 18 in-person
participants (100%) rationalized ARTs using their mental model of human
behavior. All participants contextualized activities/durations: “Some
people might take half an hour because tea in India is different than
tea [in America]” [P5] or “this person [...] brushes their teeth while
showering” [P12], frequently incorporating their existing cultural biases.
2) Interpreting Another’s Data: Eleven participants (61%) reacted to the
stimuli, questioning the validity of the data, “It’s not feasible that you
would be brushing teeth for 30 minutes” [P13], or the certainty of the
recaller, “You don’t know how sure they were about their [activities]” [P14].
Seemingly, uncertainty in the ART was partially interpreted as uncertainty
in the data source: “[It’d be easier] if you’re reflecting on your data” [P12].
3) Handling Missingness: Ten (56%) participants believed anything could
have happened during times when no certain activity was recalled: “He
might be reading, or might be using his computer, or maybe doing some-
thing else” [P16]. Additionally, six (33%) of these participants believed
temporally uncertain activities could expand to fill times when no certain
activity was recalled: “there’s no fixed time of the reading activity, so it
could expand till 7:00. Or, if we stretch it out, it could start at 5:00” [P4].
4) Interpretation of Linguistic Uncertainty: Some participants expressed
confusion over the deliberately ambiguous framing of specific tasks (e.g.,
“When could this individual have...”) to encourage inclusion of uncertain
activities: “does [this activity] fall under ‘could have been’ or ‘was’ using
a computer?” [P14]. This may have affected their accuracy because only
responses selecting all applicable activities were correct. Based on the

demographics of these participants, differences in handling missingness
and linguistic uncertainty may stem from cultural or suspected primary
language differences, but future work is warranted.

5 DISCUSSION

Design Implications for ARTs: Because participants were inclined to
handled missingness differently, ARTs may be improved by encoding
missing data potentially preventing users of ARTs from making
assumptions or distrusting the recaller. Additionally, because participants
found it challenging to interpret another’s data, encoding the level of
certainty of the recaller (e.g., altering the level of transparency) or using
ARTs to encode self-recalls may increase confidence in the data.
Design Implications for Uncertainty on Timelines: We found am-
biguation, TTransparent , was an intuitive and effective temporal uncertainty
encoding, in line with prior work [14]; additionally, we showed encoding
temporal uncertainty using ambiguation was effective even with the
addition of categorical uncertainty in ARTs. Thus, designers should
consider using encodings similar to TTransparent . Although five in-person
participants believed CTransparent was an intuitive categorical uncertainty
encoding, we found no evidence it was more effective than CSketchy. This
could be attributed to the between-subjects design or unfamiliarity with
categorical uncertainty because current timelines do not, but perhaps
should, allow multiple event sequences represented in parallel, i.e., events
scheduled concurrently are not represented differently than those not.
Limitations & Future Work: To prevent fatigue, we designed our study
to not exceed 45 minutes which limited the evaluated factors. Additionally,
our metrics for effectiveness provide opportunities for future work on
study validation methodologies in timeline visualization because they
did not account for partially correct answers or the accuracy and response
time trade-off. Lastly, we used ARTs for the applications and impact they
provide individuals and health researchers for tracking activity/behavioral
patterns over time, however, understanding of recall data, as well as
cultural differences, may have altered participant responses. Thus, while
we demonstrated the influence of preconceived biases when interpreting
timelines, this data may limit the breadth of the validity of our results,
paving the way for future studies.

Hosting workshops for participants to encode their own data in ARTs
may yield information on the intuitiveness of various uncertainty encodings
while removing the biases associated with using another’s data. Addi-
tionally, these encodings should be evaluated using less biased timelines,
like those used for project planning or historical events. We hope future
researchers are inspired to explore additional uncertainty encodings in time-
lines capturing fluctuating durations and multiple possible event sequences.

6 CONCLUSION

The results of our evaluation study indicate 1) transparency may be a good
choice for conveying temporal uncertainty even in timelines with multiple
kinds of uncertainty and 2) future work is needed to make conclusions
about categorical uncertainty encodings in timeline visualizations. Our
thematic analysis revealed that biases such as existing mental models and
assumptions about the underlying data may impact how users view time-
lines, particularly those with uncertainty. This study lays the groundwork
for encoding and evaluating multiple kinds of uncertainty in timelines,
hopefully yielding more expressive and informative visualizations.
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