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1 A Representation of the Web

1.1 Introduction to Graph

A graph is an ordered pair G = (V,E), where V is the set of vertices in the
graph, and E = {(x, y)|x, y ∈ V, x 6= y}.

The edge of the graph can be directed or undirected, and we denoted it by
drawing an arrow from one node to another to represent the direction of the
edge. An edge can also have weight, which can be extremely useful to represent
more complex structure, for example the map of different cities.

Over the years, graph theory has been studied by various mathematicians as
well as computer scientists, and many algorithms have been developed to solve
multiple problems including shortest path, spanning tree, connected problems,
... As we experience a leap in technology, the studies of large-scale graphs
and their computation become more crucial, as they represent different social
structures. In the next chapter, we will see how enormous parse graph can be
use to represent the connection between different webpages.

1.2 PageRank as a Directed Graph

Since the Web is consisted of multiple html pages linked together, it is natural to
use a directed graph as a data structure to store their relationship. We denote
each page as a node in the graph, and if there is a link from page A to page B,
we add a directed edge (A,B) to the graph.

Directed graph can also be used to represent different structures as well, for
example a citation network[2]. However, in the case of a citation network, the
graph cannot contain any cycles, since papers are written chronologically, an
old paper cannot cite a new one.

2 The PageRank Algorithm

In 1996, two graduate students, Sergey Brin and Lawrence Page, at Stan-
ford University has conducted research on the new kinds of search engine. At
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that moment, many search engine has been developed, including WWWW, Al-
taVista, WebCrawler, ... and they claimed to received millions of queries per
day. However, most algorithms at the time face serious quality and complexity
issues, which would prove to be a big problem as the popularity of the World
Wide Web was increasing rapidly. Brin and Page’s research on a new type of
search engine that uses link structure and text anchor to improve search quality,
especially in the academic realm. They came up with Google, which overtime
has proved itself as the most prominent search engine, and is currently irrepla-
cable in our daily life. One of the two main features of Google engine is the
PageRank algorithm [3], which was designed to bring order to the Web.

2.1 The PageRank value of a webpage

In this section, let’s introduce a simple, iterative version of PageRank. We define
the PageRank of a page A as follow:

Definition 1 Let an arbitrary webpage A has n pages linked to it, denoted
T1, T2, · · ·Tn. Let Cn be the number of links going out of page A. The PageRank
value of page A, let’s call it PR(A), is the following:

PR(A) =
PR(T1)

C(T1)
+
PR(T2)

C(T2)
+ · · ·+ PR(Tn)

C(Tn)
(1)

From the definition above, we can derive the basic iterative algorithm to
calculate the PageRank value of the entire network.

2.2 The Iterative Algorithm

We introduce the Basic PageRank Algorithm [4] for a network at step k as
follow:

Algorithm 1 We imagine the PageRank value as a ”fluid” that travel through
the network, passing through nodes by edges, and nodes with most amount of
fluids run into are considered important. The process goes as follows:

• Let n be the number of nodes in our network. Initially, each page receive
the PageRank value of 1/n

• Choose a number of step k

• At each step, a node A pass 1/C(A) amount of PageRank that it currently
possess through it outgoing link, into other nodes in the network. If it does
not have any outgoing links, all its PageRank value remains.

The algorithm seems to work for most cases, however, under a certain kind
of graph, this algorithm will create serious problem, (for example a graph with
isolated nodes, or strong connected components with no outlinks) which prompts
us to add some new features to the definition of PageRank and the iterative
algorithm.
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3 The Scaling of PageRank

3.1 The Damping Factor

To avoid cases where Basic PageRank fails, we introduce the damping factor α,
and a new definition of PageRank.

Definition 2 Let an arbitrary webpage A has n pages linked to it, denoted
T1, T2, · · ·Tn, and Cn be the number of links going out of page A. Let α be the
damping factor of the algorithm, such that 0 < α < 1. The PageRank value of
page A, let’s call it PR(A), is the following:

PR(A) = (1− α) + α(
PR(T1)

C(T1)
+
PR(T2)

C(T2)
+ · · ·+ PR(Tn)

C(Tn)
) (2)

Usually, we should set α to be between 0.8 and 0.9. To maximize computation
efficiency, Brin and Page chose α = 0.85.

3.2 An equivalent model for PageRank

Since our current PageRank is an iterative algorithm, one might wonder whether
the PageRank value of all webpages fluctuate as the number of step k changes.
In this section, we will look at a similar model of PageRank, the Random Surfer
Model[1]:

Theorem 1 Imagine a surfer who:

• Start randomly at one point in the graph.

• He can move from one node A to other node B within one click if (A,B) ∈
E.

• Given a probability p, he can randomly move to another random node on
the graph within one step.

In their book[4], David Easly and Jon Kleinberg have shown that the random
surfer model and PageRank model are equivalent:

Claim 1 The probability of being at a page X after k steps of this random surf is
precisely the PageRank of X after k applications of the Basic PageRank Update
Rule.

The Fundamental Theorem of Markov Chain [5] states that:

Theorem 2 Let P be the transition probability matrix for a connected Markov
chain. For a connected Markov chain there is a unique probability vector π
satisfying πP = π.
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which can be interpreted as follow: The probability that the surfer is at a
particular page X in k steps converges to a fixed number independent of the
starting point. Hence, as k gets large, the PageRank value of all nodes in our
graph will eventually converge as well.

The Random Surfer Model shows us an interesting way of proving the con-
vergence of PageRank, and it also gives us more insights into the model.

4 The Linear Algebra of PageRank

4.1 The adjacency matrix

Any simple graph can be expressed using a square adjacency matrix, and for our
PageRank directed graph, we can construct the adjacency matrix that represents
the link between different nodes as follow: for each entry (i, j) in the matrix A:

A(i, j) =

{
1, if (i, j) ∈ E
0, otherwise

We can modify each non-zero entry of matrix A so it can accurately illustrate
the flows of PageRank value from each node through its outlinks. For each entry
(i, j) ∈M ′, let n be the number of outlinks from node i, we have:

M ′(i, j) =


1
n , if (i, j) ∈ E
1, if n = 0 and i = j

0, otherwise

We can also easily get the adjacency matrix for the scaling version of PageR-
ank, by adding the damping factor to every non-zero entry of M ′. For each entry
(i, j) ∈M , let n be the number of outlinks from node i, we have:

M(i, j) =

{
α ·M ′(i, j) + 1−α

n , if M ′(i, j) 6= 0

0, otherwise

4.2 PageRank spectral analysis

Let ~vk be the PageRank vector of all webpages, where vki denotes the PageRank
value of node i after k iteration. Hence, we can represent the PageRank Update
Rule as:

vk+1
i = M1i · vk1 +M2i · vk2 + · · ·+M1n · vkn

where n denotes the total number of nodes in our graph. The equation above
can also be written as:

vk+1 = MT · vk (3)

= (MT )k+1 · v0 (4)
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If we believe the PageRank values of all nodes will eventually converges, then
the problem is boiled down to finding the vector v such that v = MT · v, which
is the eigenvector of MT with the corresponding eigenvalue of 1. Since MT is a
transitional matrix, all entries will be positive, Perron’s theorem [4] guarantees
there exists such vector v and that v is unique:

Theorem 3 Let A be a positive square matrix with spectral radius ρ, then A
will have the following properties:

• A has an eigenvalue ρ such that |ρ| > |ρ′| for all other eigenvalue ρ′

• There is an eigenvector v with positive real coordinates corresponding to
the largest eigenvalue ρ, and v is unique up to multiplication by a constant.

• If the largest eigenvalue ρ is equal to 1, then for any starting vector x 6= 0
with non- negative coordinates, the sequence of vectors Akx converges to
a vector in the direction of v as k goes to infinity.

Perron’s theorem does not only prove that the PageRank vector v converges
as k goes to infinity, it also proves the uniqueness of v.

We have reduced the computation of PageRank from an iterative method
to matrix multiplication, and now we have shown that PageRank computation
is equivalent to the problem of finding the eigenvector for the tranpose of the
transitional matrix M .

4.3 Complexity of PageRank

There are multiple algorithms for doing fast matrix multiplication, for example
Strassen’s algorithm [7] runs in O(n2.8), and since the graph for the Web is very
parse, there are plenty other algorithm that has been proved to run better. Using
divide and conquer to solve matrix exponentiation, the overall time complexity
for matrix exponentiation is O(n2.8 · log(k)), with k be the number of iteration.

However, in 1996, Watts and Strogatz’s work on the ”small-world model” [9]
has made significant impact on our understanding of social networks structure,
and one of its impact is to show that the number of steps needed for PageRank
vector to converge is negligible. In their original paper, Brin and Page claims
that there algorithm converges within 52 steps, using a network with more than
300 millions links.

Many research have been conducted to improve the computation time of
eigenvector and matrix multiplication. A recent paper [8] has shown that by
using in-memory computing with cross-point resistive memory arrays, it can
reduce the time complexity of computing eigenvector to O(1).

5 Experiment

In this section, we consider the simple network of 4 webpages as follow:
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Here is the pseudocode for PageRank algorithm using matrix multiplication
with k steps

Algorithm 1: PageRank using Matrix Multiplication

Given transitional matrix M , number of steps k;

v ←− ( 1
n ,

1
n , ...,

1
n );

Mk ←− I;
while k > 0 do

if k = 1 then
Mk = Mk ·M ;

else
Mk = Mk ·Mk;
k = k/2;

end

end
v = Mk · v;
return v;

When we run the algorithm above to our miniature network, we can see that
the PageRank value converges very well after 30 steps. The result is shown in
the table below:

Node 1 2 3 4
1 0.25 0.25 0.25 0.25
...
30 0.30 0.15 0.30 0.23
31 0.30 0.15 0.30 0.229

which has shown that our algorithm works accordingly to our analysis.
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6 Conclusion

Google has proved to be an important aspect of our everyday life, and its exis-
tence has changed the way we live and search for data for the past two decades.
PageRank algorithm, together with anchor text, being the two main features
of Google, still proves to be an interesting research problem. Multiple related
research questions have been posed, and many algorithms has been inspired by
it, including the famous HITS algorithm [6]. Above all, PageRank algorithm
has shown us that by using only simple linear algebra and a bit knowledge on
graph theory, one could open an entire new research field and change the way
people experience technology once and for all.
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