One-dimensional Port-and-Sweep Solitaire Armies

Filip Belik and Ha Le

Peg Solitaire

- Goal of reducing to one peg
- Use of jump moves where jumped peg is removed
- Lots of research done on this puzzle alone
- Conway Pagoda Function
- NP-Completeness
- Regular Languages

Solitaire Army Problem 1D

Solitaire Army Problem 2D

Port-and-Sweep Solitaire (PaSS) Rules

- Game is played on a 2D grid similar to Peg Solitaire
- Spaces can now hold up to 2 counters
- Two types of moves (can be played up, down, left, right).

- Sweep Move ---- | -1 | -1 | $-1 \mid+2$ |
| :--- | :--- | :--- |

		2		2							
		2	1	1	1	2					
				1							

Example puzzle

PaSS Army Problem 1D

(1) What is the furthest distance any army can advance?

Resource Counts

- Using the idea of a weight function, a, which gives a specific value to any board configuration

- Let $a=1.2338$, the value of a counter at position i is given by a^{i}
- The alpha-value of a board is given by the sum of values of all counters
- Think of the alpha-value as a "resource count"
- Non-increasing value by construction

Resource Counts

- Alpha value of the below board is given as follows

- Alpha value $=a^{-2}+2 a^{0}+a^{2}=4.18$
- We can calculate the maximum possible initial resource of an army as so

- Maximum army alpha value $=2 a^{0}+2 a^{-1}+2 a^{-2}+\ldots=10.56$

Distances of 10+

- Distance of 12 requires too high of a resource count
- Starting alpha-value $<=10.56<=12.44=a^{12}$
- Hence, army advances of 12+ are impossible
- A single counter at cell 10 implies a port from cell 8
- Starting alpha-value $<=10.56<=10.74=2 a^{8}$
- Hence, army advances of 10+ are impossible as well

Distance of 9

- We have shown that in order to get a single counter at cell 9, these following moves have to be made at some points:
- A rightwards port from 7 to 9
- A rightwards port from 4 to 6
- A rightwards port from 3 to 5
[maximum starting resource] - [resource loss by moves] $=6.47$
- However, $a^{9}=6.62$
- Hence, army advances of 9 are impossible

Distance of 8

- A distance of 8 is difficult to prove by deductive strategy.
- Assumption:
- No leftwards (backwards) moves are made
- No debris left behind
- Approach:
- Linear algebra (linear combination of vectors)

- Computer generation
- Able to show given above assumptions, no army can advance a distance of 8

Possible Advances

- Here is the configuration to achieve a distance of 6 with 10 counters

- How many counters do you think are needed to advance 7 spaces?
- 12?
- 15 ?
- 20?
- 50?

More reading about game here:

Collection of puzzles to try:

