One-dimensional Port-and-Sweep Solitaire Armies

Filip Belik and Ha Le

Peg Solitaire

- Goal of reducing to one peg
- Use of jump moves where jumped peg is removed
- Lots of research done on this puzzle alone
 - Conway Pagoda Function
 - NP-Completeness
 - Regular Languages

Solitaire Army Problem 1D

Solitaire Army Problem 2D

Port-and-Sweep Solitaire (PaSS) Rules

- Game is played on a 2D grid similar to Peg Solitaire
- Spaces can now hold up to 2 counters
- Two types of moves (can be played up, down, left, right).
- Sweep Move ---- -1 -1 -1 +2

Example puzzle

PaSS Army Problem 1D

Q: What is the furthest distance any army can advance?

Resource Counts

 Using the idea of a weight function, α, which gives a specific value to any board configuration

- Let $\alpha \approx 1.2338$, the value of a counter at position *i* is given by α^i
- The *alpha-value* of a board is given by the sum of values of all counters
- Think of the alpha-value as a "resource count"
 - Non-increasing value by construction

Resource Counts

Alpha value of the below board is given as follows

- Alpha value = $\alpha^{-2} + 2\alpha^{0} + \alpha^{2} \approx 4.18$
- We can calculate the maximum possible initial resource of an army as so

• Maximum army alpha value = $2\alpha^{0} + 2\alpha^{-1} + 2\alpha^{-2} + ... = 10.56$

Distances of 10+

- Distance of 12 requires too high of a resource count
 - Starting alpha-value \leq 10.56 \leq 12.44 \approx α^{12}
 - Hence, army advances of 12+ are impossible
- A single counter at cell 10 implies a port from cell 8
 - Starting alpha-value \leq 10.56 \leq 10.74 \approx 2 α ⁸
 - Hence, army advances of 10+ are impossible as well

Distance of 9

- We have shown that in order to get a single counter at cell 9, these following moves have to be made at some points:
 - A rightwards port from 7 to 9
 - A rightwards port from 4 to 6
 - A rightwards port from 3 to 5

[maximum starting resource] - [resource loss by moves] ≈ 6.47

- However, $\alpha^9 \approx 6.62$
- Hence, army advances of 9 are impossible

Distance of 8

- A distance of 8 is difficult to prove by deductive strategy.
- Assumption:
 - No leftwards (backwards) moves are made
 - No debris left behind
- Approach:
 - Linear algebra (linear combination of vectors)
- **-2** 0 **+1 -1 -1 -1 +**

- Computer generation
- Able to show given above assumptions, no army can advance a distance of 8

Possible Advances

Here is the configuration to achieve a distance of 6 with 10 counters

- How many counters do you think are needed to advance 7 spaces?
 - 0 12?
 - 0 15?
 - o 20?
 - o 50?

Thank you

- Professor Jacob Siehler
- Stephen Hilding Fund

More reading about game here:

Collection of puzzles to try:

