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Measuring activities and postures is an important area of research in ubiquitous computing, human-computer interaction,
and personal health informatics. One approach that researchers use to collect large amounts of labeled data to develop models
for activity recognition and measurement is asking participants to self-report their daily activities. Although participants can
typically recall their sequence of daily activities, remembering the precise start and end times of each activity is significantly
more challenging. ACAI is a novel, context-assisted ACtivity Annotation Interface that enables participants to efficiently label
their activities by accepting or adjusting system-generated activity suggestions while explicitly expressing uncertainty about
temporal boundaries. We evaluated ACAI using two complementary studies: a usability study with 11 participants and a
two-week, free-living study with 14 participants. We compared our activity annotation system with the current gold-standard
methods for activity recall in health sciences research: 24PAR and its computerized version, ACT24. Our system reduced
annotation time and perceived effort while significantly improving data validity and fidelity compared to both standard
human-supervised and unsupervised activity recall approaches. We discuss the limitations of our design and implications for
developing adaptive, human-in-the-loop activity recognition systems used to collect self-report data on activity.
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1 INTRODUCTION

Accurate human activity detection could accelerate development of effective health interventions and interactive
systems. Researchers in UbiComp, HCI, kinesiology, digital phenotyping, and behavioral science aim to leverage
wearable sensing to build machine learning models for human activity recognition (HAR) [9, 16, 24, 55, 91]. Cre-
ating and validating such models, however, requires large sensor datasets with high-quality activity annotations.
Often, researchers must collect datasets with people in the laboratory; these data sets may have limited label
diversity and overly homogeneous signals, resulting in models that do not generalize to accurately recognize
activity in varied and free-living contexts and across diverse individual lifestyles [20, 34].

The gold standard method for free-living data collection is to use an ego-centric camera [26, 32, 33, 47]. This
approach presents several significant challenges. For researchers, video annotation is time-consuming, expensive,
and susceptible to annotator bias. For study participants, on-body cameras create substantial privacy concerns,
limiting recruitment and precluding deployment in extended studies [46].

Collecting participants’ self-reports is a more practical alternative for acquiring multi-day or multi-week
annotation as people go about their normal lives. Two approaches to self-annotation are momentary and ret-
rospective measurement. A popular momentary approach is Ecological Momentary Assessment (EMA) [90],
where participants respond to surveys prompted on mobile or wearable devices [3, 22]. EMA, however, induces
interruption burden, creating contextual response biases (i.e., participants’ receptivity to the prompt heavily
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depends on their contexts) that generate data missingness and label imbalance, ultimately compromising the
quality of the dataset [28, 37, 49, 67, 72, 80]. Modifications to EMA, such as “microinteraction” EMA (UEMA),
where single-question prompts are delivered via accessible wearables can collect high-density activity data at
5-15 minute intervals [40, 59], may reduce burden under some data collection conditions.

Retrospective methods address these limitations by allowing participants to report activities by recalling them
after they are completed, typically at the end of the day [9]. This approach reduces the interruption burden and
data missingness while enabling more natural annotation behaviors. Retrospective recall can be conducted with or
without human supervision [13, 110]. The gold standard for 24-hour activity recall is the 24PAR (24-hour Physical
Activity Recall) method, a validated, structured, human-administered physical activity assessment instrument
that collects details about study participants’ past-day activities [71]. In a 24PAR interview, the interviewer
probes in real-time, helping participants to remember short-burst activities and filling in gaps in a daily activity
timeline. This method has a low cognitive burden on participants and has been used with all age groups [110].
Researchers, however, face significant scalability challenges in administering the 24PAR because it must be
administered daily by trained staff, thus limiting the number of participants that can be enrolled simultaneously
and increasing administration cost. Furthermore, the 24PAR is time sensitive and requires that interviews be
scheduled within a narrow window every day, making coordination with participants challenging and often
leads to missed appointments and delays.

Digital recall methods—administered through a website or a mobile app—offer a more scalable and efficient
alternative to 24PAR. These tools allow participants to self-report at their convenience, reducing the burden on
researchers to schedule and conduct interviews [13]. Digital recall methods also enable real-time data collection,
automatic data synchronization, and standardized prompts, which help improve data consistency and reduce
interviewer bias. Despite these advantages, digital recall methods still induce recall bias, especially regarding
activity start and stop times. Participants who incorrectly recall the start or end time of one activity may create
systematic errors, distorting the timing of all subsequent activities and potentially skewing the entire timeline
[90]. Automatic context-assisted recall can mitigate recall bias by providing participants with contextual cues
that can help them better remember their activities. These cues can include physiological data (e.g., heart rate),
location data, or environmental triggers (e.g., weather or sounds) that may be linked to the activities participants
perform. By providing participants with such context, they may be able to more accurately pinpoint the timing
their prior activities [75, 83].

Even using automatic context-assisted recall, precise identification of activity transition times, i.e., the moment
when one activity ends and another begins can be difficult because activity boundaries are often not clear-cut. For
example, the transition from “walking” to “lying down” may not occur at a single moment; it may involve a gradual
change in behavior and posture. In addition, interleaved activities, where one activity overlaps with another,
further complicate the task of indicating precisely when activities begin and end. Misremembering or misreporting
these transitions can create errors that propagate through the entire recall, distorting the timeline. When using
labels for training and validating HAR algorithms, researchers have shown that even a 5% misalignment in
activity boundaries can lead to a significant drop in model performance [56]. Nevertheless, despite the difficulty
and inherent uncertainty of the labeling task, most context-assisted recall methods and interfaces do not allow
participants to express this temporal uncertainty.

Although unsupervised digital recall methods offer efficiency by allowing participants to generate their own
activity annotations, they often lack the nuanced probing that human supervision provides. In a 24PAR interview,
interviewers can ask follow-up questions, clarify vague responses, and prompt participants to recall additional
details about their activities, leading to more consistent and accurate data. In contrast, unsupervised methods rely
on the participant’s ability to recall and annotate their activities independently, which can result in significant
variability in the quality and completeness of annotations across participants and also within participants over
time [98]. Some participants may provide highly detailed and accurate annotations, while others may produce
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sparse or inconsistent labels, leading to inconsistencies across the dataset. A semi-supervised method that
generates label suggestions based on passively sensed data, allowing participants to “fix” or “confirm” these
suggestions instead of creating new annotations from scratch, may combine the scalability and convenience of
digital recall with the human oversight necessary to ensure consistent and high-quality annotations.

To gather ground-truth activity labels from people in free-living environments, researchers must develop
ecologically valid data collection systems that allow individual participants to accurately self-label their activities,
ideally expressing temporal uncertainty. To sustain such labeling for a week or more, such systems must maintain
participant engagement with a manageable cognitive workload. To assist people with labeling, such systems may
need to combine momentary labeling and automatically acquired contextual cues.

We present ACAI a novel semi-automated annotation system that allows participants to self-annotate their
activities up to a five-minute granularity. In ACAI a user interface presents people annotating their own activities
with system-generated activity blocks pre-filled with activity predictions; study participants can “fix” or “confirm”
these predictions rather than creating annotations from scratch. Additionally, the ACAI interface provides
participants the option to label time intervals during which they are not entirely certain about their activities as
“uncertain intervals.” We hypothesize that the design of ACAI will reduce participant burden while producing
higher-validity annotations obtainable during week-long or multi-week field studies.

We address the following research questions:

e RQ1: What are the effects of uncertainty annotation and system suggestions on system usability, annotation
time and participants’ perceived workload?

o RQ2: What is the criterion validity of the annotations generated by users using our annotation system?

e RQ3: What is the feasibility of using our proposed annotation interface in a week-long free-living study?

2 BACKGROUND

Human activity recognition (HAR) refers to the problem of identifying specific activities or postures using
wearable sensors. Researchers can use activity labels collected in free-living settings to train activity recognition
models, or simply to understand a person’s daily habits and lifestyle. Large data sets with accurate activity labels
that are synchronized with sensing data lead to better model training and a more informative evaluation process.
However, training data sets for human activity recognition are often collected in heavily controlled [4, 18] or
semi-controlled [20] laboratory settings. This leads to limited sets of labels and behaviors that may not reflect
the complexity of the same behaviors in free-living environments. Models trained on such datasets often fail to
generalize, performing poorly in less controlled real-world scenarios [82] where people have a wider range of
activities or experience drastic changes in mobility patterns or lifestyles that can impact the distribution of the
recorded signals.

There have been attempts to capture information on a person’s free-living physical activity (PA) labels in the
wild to support better training of HAR models and more realistic evaluation. There are two major label collection
methods: momentary vs. retrospective.

2.1 Measuring activities in-the-moment

One method of acquiring momentary activity labels is direct observation, where participants wear egocentric
cameras to capture time-lapse images or videos that are later manually annotated by trained coders [32, 47].
Privacy concerns, however, limit the use of this approach in multi-day studies, and annotation is labor-intensive.
Annotation quality also depends heavily on the annotators’ ability to infer activity from first-person views
without participant input.

An alternative is self-report. Ecological momentary assessment (EMA), or experience sampling, prompts
participants via mobile or wearable devices to report activities in real time [87, 90]. While widely used in research
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studies, EMA can be intrusive, making frequent prompts burdensome and reducing compliance. As a result,
researchers must balance frequency and burden to maintain response rates, limiting temporal resolution. yfEMA
[40] addresses this by using 2-3 second smartwatch prompts, enabling high-frequency labeling (e.g., four times
per hour) while maintaining compliance [79, 80]. This method is constrained by screen size, cognitive simplicity
(e.g., <4 response options), and requires two-hand interaction. Audio-pyEMA supports speech input for open-ended,
hands-free labeling and enables broader behavioral coverage while sustaining high response rates [59]. All EMA
methods may still suffer from contextual non-response bias [60, 80], affecting the diversity of data captured.

Since activity labels require accurate start and stop times—which EMA prompts don’t easily provide [51]—designs
like START/STOP allow users to manually mark activity boundaries [17, 101], similar to systems used by Fitbit
[30] and Strava [92]. However, this can feel unnatural and burdensome, requiring users to pull out their phone or
watch and remember to stop the recording [99]. Weppner et al. introduced a smart glasses interface where head
or finger gestures marked activity boundaries [104]. The extraSensory app prompted users to indicate both the
start time and expected duration of an activity [98], but interruptions or changes in behavior can still result in
inaccurate labeling. Although the main purpose of their design was to enable accurate segmentation of activity
boundaries, this approach can fail if participants forget to click the STOP button when they finish, or overestimate
the expected duration of the activity.

2.2 Recalling activities retrospectively

Another common method to collect activity labels in free-living settings is to use a recall interface, where
participants input their activities at the end of a day, after the activities have concluded. Retrospective recall
eliminates interruption burden and activity interruption. Schroeder et al. proposed an interface that allowed
participants to annotate using a web application by choosing the assigned tags of the activity and its start/stop
time [85]. Khan and Maes designed an interface that used a clock’s circular shape to allow participants to indicate
the start and end times of a label [48]. Mairittha et al. presented a conversational mobile interface that allowed
participants to generate labels using speech [70]. This approach is scalable to earables or smartwatches to mitigate
the need for participants to pull out the phone, thus creating a hand-free interaction that is less disruptive to
participants.

One downside of using retrospective recall interfaces is recall bias, where events happening before or after an
event affect the recall of the event. Fast-changing, overlapping sequences of activities [7] can lead to mistakes
in labeling activity boundaries, which can significantly reduce model performance [56]. Context-assisted recall
presents participants with additional information/context that may jog their memories. Dunton et al. presented a
mobile application that allowed participants to annotate their physical activity with the help of accelerometer
sensing data [27]. Rabbi et al. allowed participants to annotate their physical activity along with their food and
take pictures of their food to assist with recall [84]. Hoelzemann and Laerhoven compared the effectiveness of
models trained on datasets collected using in-situ measurements and a desktop retrospective recall interface with
visualization of accelerometer data (time-series recall) and found that models performed better on the time-series
recall dataset [38]. Korpela et al. presented a desktop interface that showed both the accelerometer signals and
the output of a depth camera on the screen to facilitate better segmentation of labels [54].

2.3 Human-Al collaborative annotation system

Human-computer collaboration has been a long-standing topic in HCI research. Achieving effective human-Al
complementarity, however, is not guaranteed and requires careful design. Recent studies show that human-AI
teams can sometimes perform worse than either humans or Al alone across various tasks [97]. A key barrier to
successful collaboration is improper calibration of trust—specifically, under-reliance (ignoring helpful suggestions)
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and over-reliance (accepting incorrect suggestions) on Al systems [8, 12, 44, 57]. These issues highlight the need
for systems that support better coordination between human judgment and Al suggestions.

Humans and Al often have distinct and complementary strengths. When users are trained to understand
these differences, they can make better decisions about when to rely on the Al and when to take control
themselves [68, 69, 77]. This complementary approach is especially valuable in annotation tasks, where human
contextual knowledge can refine or correct Al-generated predictions.

There has been growing interest in human-Al collaborative annotation, spanning domains such as docu-
ment [29], video [25], image [88], audio [6], and biomedical data [10]. More recently, Al-generated labels have
been integrated into annotation systems for passive sensing data. For example, Stojchevska et al. allowed partici-
pants to review and edit predicted activity labels at the end of the day [94], and ExtraSensory enabled users to
refine model-generated labels [98]. Similarly, Neupane et al. showed how reviewing context and stress predictions
can improve labeling accuracy [75]. These studies have demonstrated that incorporating Al suggestions can
reduce cognitive burden and accelerate the annotation process [25].

To address the limitations of current retrospective annotation systems—particularly challenges related to
recall bias and temporal uncertainty—we introduce ACAI a context-assisted annotation interface that supports
multi-label activity annotation at five-minute granularity. ACAI leverages passive sensing data to generate activity
suggestions that participants can either “confirm” or “correct”. ACAI also allows participants to mark uncertain
intervals, enabling the expression of human uncertainty in the annotation process.

3 ACAI: SYSTEM DESIGN AND RATIONALE

We present the components of ACAI and the design rationale behind each component. In Section 3.2, we describe
the hypotheses that drove our interaction design based on prior research, and we describe the implementation of
three different versions of the interface that were used in the user study.

3.1 Visualization of contextual cues to assist recall on mobile interface

The top two-thirds of the ACAI display showed six different passively collected contextual cues, along with yEMA
responses: location, ambient noise, calendar events, heart rate, phone usage, and step counts. All contextual
cues were displayed within the screen of ACAI so that users did not need to scroll between different panels. A
screenshot of the visualization panel in Figure 1 shows:

o Location data or calendar events: Location data (GPS) were collected once every minute from the participant’s
phone. When LOCATION was selected, the location for the current time on the activity timeline was
displayed at the top of the screen on a Google map. As the activity timeline moved forward or backwards in
time, the location changed. When CALENDAR was selected, calendar events retrieved from the participant’s
Google or Outlook calendar were shown. Participants could click on the “SWITCH TO CALENDAR” or the
“SWITCH TO LOCATION” button at the top of the screen to toggle between these views.

o Phone use: The mobile application logged the phone status (i.e., whether the phone screen was on and/or un-
locked) once each minute, and the phone use status was displayed as a heat map below the location/calendar
view. A yellow interval indicated that the phone was being used, and a white interval indicated that the
phone screen was off.

o Step count: Step count was measured by the smartwatch once every minute, and the data were displayed
below the phone use view. Because a vertical axis is space-consuming horizontally, and displaying numbers
on top of the bars can lead to information overload and confuse users, we color coded the value of the step
count. Green bars indicate small movement or sedentary (<50 steps per minute), yellow bars indicate slow
walking to normal walking (50-150 steps per minute), and red bars indicate brisk walking to running (>150

, Vol. 1, No. 1, Article . Publication date: August 2025.



6

Anonymized for blind submission

switch to

View calendar Yo = ) > inlend-v events
' ® |Calendar events
b B
. 9Q
&a ) ®——————— location data
google
phone usage Y, =
. ) 1:“ ° self-report (WEMA)
ambient noise — @ < rip.peeen
~Conversing
® heart rate
step count ————————@w_ ull - 1 B
ann.otatlllon anding, conversi 1 i
timeline T — timestamp entry/fixing/
updating with certain and
selected label uncertain 5-min windows
for selected —— e WALKING

time window

Fig. 1. The top two-thirds of our annotation interface presented participants with their self-reports and passively collected
contextual cues to aid with the recall process. Users could switch between a location view and calendar view. The bottom
third displayed the annotation timeline and labeling controls.

3.2

steps per minute). The threshold was chosen based on prior work on the young adult population [96], and
we adapted the threshold mentioned in the paper based on our internal testing of the Pixel Watch.

Heart rate: Average heart rate data from the watch were displayed as a line graph with the step count
data. Although heart rate varies with age, physical activity level, and lifestyle, given the homogeneous
population in our user study (young and emerging adults), we categorized heart rate as resting (color-coded
green), moderate (color-coded yellow) and vigorous (color-coded red). The threshold was chosen based on
prior work (formula based on age) [95], and we adapted the threshold mentioned in the paper based on our
internal testing of the Pixel Watch.

Ambient noises: Every five minutes, the application ran Google’s YAMNet noise classification [31] on
10-second audio clips. No raw audio clips from this process were stored on the device but the classification
ouptut was transferred to the phone and displayed above the heart rate and step count.

HEMA responses: Once every 10 minutes, participants were prompted on the watch using pEMA. The audio
clips collected from speech-based tEMA were analyzed using a fine-tuned Google Cloud speech-to-text
v1! model running on the watch; the results of the speech recognition were transmitted to the phone once
every hour. The self-report activity labels were displayed as bolded text in the middle section of the screen,
along with the ambient noise classification results.

Interaction design

In this section, we describe the interaction design behind our system. Our approach was guided by two main
hypotheses:

https://cloud.google.com/speech-to-text.
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Fig. 2. Three different versions of ACAI interaction were evaluated. Version ** allowed uncertainty labeling but did not make
automatic annotation suggestions. Version () made automatic annotation suggestions but did not allow uncertainty labeling.

Version () had automatic annotation suggestions and allowed users to indicate labeling uncertainty. Labels were selected
from a list of postures and activities.

1 Hi:An appropriate interaction design that allows participants to express uncertainty will not

increase their perceived burden or the time they believe annotation takes.

Although recalling an activity might be relatively easy, recalling the exact start and end times of an activity
might be considered a more challenging task [73]. This makes annotating at activity transitions unreliable and
can cause systematic errors if the recalled duration or activity timestamps differ significantly from the actual
activities [56]. We hypothesize that a well thought-out interaction design that can allow participants to express
their temporal uncertainty about the start and end time of an activity will not increase annotation time, perceived
effort, or adversely affect system usability.

H2: Participants will find it easier to modify system-suggested annotations than to add new
annotations manually.

Recently, multiple research teams have investigated human-AI collaboration systems, specifically systems where
the users review the Al-generated suggestions and make changes [102]. These studies show that providing users
with Al predictions to review reduced the time and effort for users in multiple tasks (e.g., writing, programming,
creativity, planning) [42, 61, 62, 108]. In this study, we hypothesized that a well-designed interface that allows
participants to adjust/fix the suggested annotation would increase the usability of the system and the speed of
annotation.
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Given our iterative design process, we decided to test our hypotheses on the utility of the two major components
as we developed ACAL Thus, we implemented three different versions of the annotation interface, with three
different combinations of functionalities presented by H1 and H2. We conducted a study where we asked 11
participants to collect two days of data in the free-living settings followed by an in-lab usability session where
participants interacted with the three prototypes of annotation interface using their own data. This helped us
collect participants’ preferences and evaluate our hypotheses. To keep the time required for the in-lab session
manageable and to avoid participants annotating the same data multiple times, potentially causing data skewness,
we decided to limit the in-lab evaluations to the three versions of the interfaces that allow us to test our hypotheses,
and not all combinations of all features. We also wanted to ensure that participants took roughly the same amount
of time to annotate on each of the three versions. For each version, there are three main supported interactions:
adding, editing, and deleting annotations.

In version ", participants could add the timestamps of the certain and uncertain intervals by sliding the
anchors representing the start and end of each activity interval. In version (), there was no uncertain interval.
Participants fixed the timestamps of the system suggestions by sliding the anchors representing the start and
end times. In version (), participants could tap-and-slide their finger through the timeline to flip the status
of each time block from “no label” — “uncertain” — “certain.” In all three versions, participants could add/fix
the posture/activity of the label by tapping on a drop-down menu (see Fig. 2). To edit an annotation, in all three
versions, participants could long-press on the targeted annotation and adjust the timestamp and the label in
the same way as when adding a label. To delete an annotation, participants could long press on the targeted
annotation then and click on the DELETE button (or CLEAR in version i) ).

We also supported additional interactions to navigate the timeline. These included scrolling, zooming in and
zooming out. Participants could scroll forward or backward on the timeline by sliding their finger left/right
on the screen. Participants could adjust zoom levels by double tapping or pinching two fingers on the screen.
In version ) and version *(*), the timeline auto-scrolled and zoomed when participants moved to a new
suggestion (clicking NEXT/PREV), centering the current activity block on the screen. We expected this would
reduce participant’s manual navigation time.

Comparing version 1) with version (Y enabled us to study the effects of “uncertain” labels (Hypothesis 1);
and comparing version +1(®) and version "' enabled studying the efficacy of system-suggestions on participants’
burden and annotation behaviors (Hypothesis 2). Additional details about the interaction design of ACAI are
available in Appendix B.

3.2.1 pEMA interactions. We used the same multimodal-yEMA system proposed by Le et al. [60], and adjusted
the prompting interval to once every 10 min. This pEMA systems was shown to be usable and have high
compliance when deployed in week-long field study. In the yEMA system, participants were prompted to report
their in-the-moment posture and/or activity, and they could respond in one of three ways: 1) by tapping on
activity options displayed on the watch screen, 2) by writing letters on the watch screen to narrow down activity
options that were displayed, or 3) by speaking the current label to the watch.

3.3 Implementation

We implemented and deployed our system on the Android operating system. Our mobile application runs on all
Android phones over Android 9, and the WearOS application runs on the Pixel Watch 2. We installed the app on
participants’ personal phones. We show an overview of our system in Figure 3. The phone and the smartwatch
continuously collected passive sensing data in the background and transferred the data to our Firebase server
every hour throughout the study period. We stored and processed the passive sensing data to generate system
suggestions of posture and activity. Approximately one hour after context-cue data are collected by the watch
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Fig. 3. Overview of our smartphone-smartwatch system.

and phone, suggested activity labels appear in the phone ACAI interface. We presented the details about the
algorithm to generate system suggestions in Appendix E.

We chose to implement ACAI on a mobile platform rather than a web interface for two main reasons. First,
mobile apps allow participants to conveniently annotate their activities throughout the day, which can improve
compliance and recall accuracy by reducing the delay between the activity and annotation. Although web
interfaces on laptops may offer more fine-grained interactions, they are less practical for participants to carry and
use on the go. Second, a mobile app reduces data latency. A web-based interface would require transferring data
from the watch and phone to a remote server via the internet, which may not always be available. In contrast, a
mobile app can receive data directly from the watch over Bluetooth, enabling lower-latency and more reliable
real-time annotations.

4 STUDY DESIGNS

We conducted two studies with a total of 24 participants. The first study with 11 participants was an usability
evaluation in which we wanted to understand the effects of annotating uncertainty and auto-suggestions on
system usability, annotation time, and effort (Hypothesis 1 and 2). We conducted the second study with 13
participants over two weeks. The goal was to evaluate two aspects of the system: in the first phase (week 1) the
aim was to assess the criterion validity of our annotation interface, and in the second phase (week 2) the aim was
to evaluate the longitudinal usability and sustainability of the interface in free-living settings.

4.1 Recruitment and participant compensation

Our study protocol was approved by the institutional review board at [anonymized university]. Participants were
recruited via emails to relevant mailing lists, social media posts, and posters placed around the university campus.
We invited interested participants for an initial zoom call to determine eligibility. Eligibility criteria included
participants 1) aged 18 or above, 2) who had no cognitive, visual, or hearing impairments, 3) were willing to wear
a smartwatch for up to 14 days, 4) were willing to wear a motion sensor taped to their thigh for up to 7 days, and
5) had an Android phone and were willing to download an Android application on their phone. During the initial
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Zoom call, a research assistant went through the consent form with the participants and asked them to download
an Android application through the Google Play Store to check their device’s eligibility (memory, storage, and
sensor availability). We compensated participants $50 for Study 1 and $110 for Study 2 via Amazon gift cards.

Both studies followed a within-subject design with three conditions. We calculated the required sample size for
the study using a one-way repeated-measures ANOVA test with & = 0.05, power = 0.8, number of conditions = 3,
p =0.5,¢=1.0,and n? = 0.14 (large effect size), resulting in a sample size of n = 11 participants. We recruited 11
participants for the first study, and 14 participants for the second study. One participant participated in both
studies. We list participant demographics in Table 1; all participants in our studies were students at [anonymized
institution].

Table 1. Summary of participant demographics for both studies

Study 1 (n=11) Study 2 (n=14)
Age (years) M =24.5, SD = 3.34, range = 20-31 M =23, SD = 3.03, range = 18-28
Gender 8 Female, 3 Male 3 Female, 11 Male
Race 8 Asian, 2 Caucasian, 1 Black 13 Asian, 1 Black
Familiarity with tracking 2 Very familiar, 8 Somewhat familiar, | 4 Very familiar, 6 Somewhat familiar,
software/devices* 1 Not familiar at all 4 Not familiar at all
Physical activity level** 1 Active, 4 Moderate, 6 Sedentary 5 Moderate, 9 Sedentary

* Responses to the question “How familiar are you with tracking applications on wearable devices (e.g., fitness trackers, smartwatches)?”.
** Categorized based on the responses to the questions “How much time on a typical day do you spend doing moderate/vigorous physical
activity?”

4.2 Introductory session

We invited eligible participants to an in-person introductory session. A research assistant obtained signed consent
from the participants and guided the participants through the setup of the application on their phones. The
research assistant paired a Pixel Watch 2 to the participants’ phones and downloaded the WearOS application on
the watch. If a participant frequently used Outlook calendar to log events or meetings, the research assistant
asked for permission to sync their Outlook calendar with the Calendar application on their phone. This allowed
our system to access the participant’s calendar events in real time.

In both studies, we asked participants to complete a survey about demographic information, physical activity
level, and familiarity with self-tracking tools (e.g., fitness trackers, smartwatches). The research assistant gave an
introduction to the functionalities of the mobile annotation interface and showed an example of how the data
would be represented on the interface. We trained participants to answer yfEMA questions on the watch using a
ten-minute tutorial video (see Supplementary Materials). In the second study, we also instructed each participant
on how to attach a research-grade Actigraph GT9X Link sensor (Actigraph, LLC) to the top of the middle of the
thigh directly on the skin with medical adhesive tape; the sensor application was waterproof and the sensor
could be worn continuously for a week. Participants could choose to use the left or right thigh.

4.3 Study protocols

The first study was a usability study in which participants collected data in their natural environments using a
provided smartwatch and their personal phone for two days and attended a one-hour in-lab session. The second
study was a two-phase evaluation, where each phase lasted for one week, during which participants collected
data and used the annotation interface in free-living settings.
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4.3.1 Study 1: Iterative design and comparison. In Study 1, we aimed to answer RQ1 — What are the effects of
uncertainty annotation and system suggestions on system usability, annotation time and participants’
perceived workload? We conducted a usability study to compare three different versions of ACAIL We instructed
participants to wear watches, carry their personal phones, and answer yEMA prompts for two days. Participants
did not interact with the phone app or the annotation interfaces during the free-living portion of the study.

At the end of the two-day free-living portion of the study, we invited participants to the final usability session
and exit interview. We introduced participants to three versions of the annotation interface (Figure 2). For each
version of the interface, participants completed a tutorial built into the application and learned how to annotate
their posture and activity. Each tutorial ended with a series of tasks to test participants’ understanding of the
system. Participants could ask the research assistant in the room questions during the tutorial as needed. After
the tutorial, participants used the interface to annotate one day of posture and activity (of the two days in the
free-living portion of the study) in a think-out-loud session. The same day was used for all the interfaces version,
and the order of the interfaces is randomized for each participant to minimize carryover effect. Participants then
completed a usability survey assessing each interface version — the survey consisted of an adapted version of the
system usability scale (SUS) [11] and the NASA-TXL scale [14] (see questions in Table 5, Appendix A). We asked
participants open-ended questions at the end of the session about which features they preferred, which version
of the interface was most intuitive to them, and their overall experience collecting data in the field.

4.3.2 Study 2.1: Within-subject validity study. The first phase of Study 2 aimed to answer RQ2 - What is the
criterion validity of the annotations generated by users using our annotation system (compared to
current practice)? To evaluate this question, we compared the criterion validity of the annotations produced by
ACAI against two standard recall methods: a standard 24-hour physical activity recall (24PAR), and a computerized
24-hour activity recall (ACT24). Participants used each method for two days (in total six days for three conditions),
and we counterbalanced the order of the conditions to account for potential order effects and minimize bias
across participants.

The 24 Physical Activity Recall (24PAR) is a telephone-and-interviewer administered self-report instrument
designed to collect information about activity duration, energy expenditure, and the context of an individual’s
physical activity and sedentary behaviors throughout the day [52]. During the 24PAR, the interviewer asks
participants to report on their activities in the past 24 hours in bouts of 5 minutes. The interviewer can ask
follow-up questions during the 24PAR to extract detailed annotations from the participant. The reported activities
are matched to the corresponding MET score from the Compendium of Physical Activity (CPA) [35]. Prior
research has shown the robustness of 24PAR against objective measurements (such as the SenseWear Armbands
[52, 93] or a hip-worn sensor [45]). Administering the 24PAR, however, is time-consuming for both participants
and the research team, making it difficult to scale for larger studies. In the 24PAR condition, a member of the
research team set up an online call with the participant each morning to complete a 24PAR recall interview. The
call lasted about 30 minutes. We asked participants to recall their activities and postures from the day before.

Due to the difficulty scaling 24PAR, researchers have developed Activities Completed over Time in 24 Hours
(ACT24), a digital web-based version of the 24PAR [36]. We used the third version of the software for our study
(ACT24 v3.0), which is compatible with multiple devices including tablets, smartphones, desktops [45]. Multiple
studies have confirmed the validity of ACT24 against objective measurements, including activPAL and SenseWear
Armbands [45, 93]. In the ACT24 condition, we sent a link to each participant’s email each morning with a link
to their ACT24 accounts. Participants recalled and annotated their activities and postures of the day before using
the link.

In the ACAI condition of Study 2.1, we instructed participants to wear the watch, carry their personal phone,
and answer uEMA prompts throughout the day. Each participant received two prompts on their phone every
day—one at noon and one at 8 pm—to use the app to annotate their activities.
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Additionally, we asked participants to wear the GT9X Link thigh sensor for six days, even during sleep. We
used the 80 Hz +8 g tri-axial accelerometer data from the thigh sensor as the objective passive sensing measure
to assess the validity of the three annotation mechanisms [45, 51, 93].

4.3.3 Study 2.2: Feasibility study. Phase 2 of Study 2 aimed to answer RQ3 - What is the feasibility of using
our proposed annotation interface for longer study duration (seven days)? Immediately after six days in
Study 2.1, we asked participants to continue using our proposed annotation interface for another seven days. We
measured whether participants’ annotation behaviors changed over time and evaluated the ability of ACAI to
collect diverse and naturalistic activity patterns and habits. In this phase, participants did not need to wear the
ActiGraph thigh sensor. Although the GT9X Link sensor can be worn comfortably on the thigh for about a week,
after a week the medical tape can begin irritating the skin and become uncomfortable.

After the end of the 13-day period, we invited participants to an in-person exit interview. During the interview,
participants attended a semi-structured interview with a member of the research team. Participants shared their
overall impression and experience with the system and provided suggestions on improving the implementation
the annotation interface. Each session lasted approximately 60 min, and we recorded the audio of the session
after obtaining consent from the participants.

5 FINDINGS FROM THE USER STUDY

In this section, we present our findings from the two user studies, following the respective research questions.

5.1 Impacts of uncertainty and auto-suggestions on system usability, annotation time and perceived

workload (RQT)
We present the results from Study 1 with 11 participants, based on the hypotheses that drove our design decisions.

H1: An appropriate interaction design that allows participants to express uncertainty will not
increase their perceived burden or the time they believe annotation takes.

e We found no statistical differences in annotation duration, system usability, and perceived efforts
between version () and () (p > .05).

We show the distribution in system usability score, annotation time and perceived effort (NASA-TLX score)
across the three conditions in Figure 4. Overall, we found no differences in usability, annotation time and perceived
effort between version () and (¥, Asking participants to annotate certain and uncertain labels did not decrease
quantitatively assessed system usability or increase annotation time. The semi-structured interviews, however,
uncovered some differences in participant perceptions. Of the 11 participants in the study, five expressed that
having uncertainty intervals was helpful for annotation: “I think the uncertainty is helpful because [...] I could not
recall everything that I did. So it’s better to have that than [not]” [U3]. Five other participants, however, commented
that adding the uncertainty intervals increased their recall efforts. They attributed the burden to 1) the additional
physical effort (i.e., time) to add an additional interval with uncertainty, and 2) the additional mental effort
required to assess their confidence in the annotations.

Referring to the time taken to annotate uncertainty in the interval, one participant said, ‘Tt complicates things
too much. I think having two different certainty uncertainty takes too much time and I don’t know how this will be
used” [U2]. Three participants expressed that the physical effort might be reduced by a redesign of the interaction,
one saying “Doing the uncertainty part is annoying, especially in the first ['"'] option. But the way we could do
it in the second [‘”'@ option] was much better just by tapping where you could. It’s very fast, if you had to put
uncertainty, that was the way I would rather do it and [another way when I have to drag the intervals twice] it’s very

difficult” [U11].
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Fig. 4. System usability score, annotation time, and NASA-TLX score across three conditions in Study 1. *** p-value < .001, **

p-value < .05.

Participants also mentioned the mental effort associated with adding uncertain intervals: 7 feel like switching
between uncertain and certain was a little mentally demanding itself” [U6]. This mental effort can arise from the
participants’ interpretation of uncertainty: “Because I feel like there is no way for me to accurately remember
what I did every minute. The voice input (1EMA) was very helpful, but still, I can’t remember which minute I was
doing something. So even if I can input like, I was certain for this period, I was doing this [activity]. I was not 100%
certain anyways” [U6]. Two participants also said that adding an uncertain interval forced them to think more
carefully about the timestamp: “[To annotate] separately the uncertain part and the certain part, I have to recall
more carefully” [U11].

H2: Participants will find it easier to modify system-suggested annotations than to add new annota-
tions manually.

e Pairwise comparison with Tukey adjustment shows that the system usability score of version i s
significantly higher than version "' (t = 4.96,p < .001).

e Pairwise comparison with Tukey adjustment shows that the annotation time for version ) s
significantly lower than version "! (t = —2.73,p < .001).

e We found no difference in perceived effort between version ** and (),

All eleven participants commented that the system-suggested labels were helpful and improved annotation
speed. Participants preferred the automatic scroll and zoom function between segments: ‘T like the next and the
previous (auto-scrolling) functions. So the moment you are done |[...], it just automatically went to the next. That
was helpful” [U1]. We show the interaction counts for each ACAI version in Table 2; participants engaged in
significantly more manual scrolling in version ** than the other two versions.
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Fig. 5. Across the three conditions, the distribution of certain vs. uncertain labels (in hours), the number of annotations, and
the mean length of each annotation.

Interaction Type & ® ()
Add label 155 197 210
Change activity/posture of the suggestion NA 214 172
Delete label 6 7 13
Edit label 45 10 16
Scroll backward (manual) 268 122 43
Scroll forward (manual) 426 181 67
Zoom in 6 1 3
Zoom out 13 12 13

Table 2. Interaction counts for each condition, across all participants. (NA = not applicable)

Participants also commented that the label suggestions reduced their recall burden and helped them better
triangulate information on the interface: “Pre-filled activities give you an idea as to what you were doing and
you could recall according to the step count as well the heart rate. The step count is high and I can see [the system
suggested] standing or walking, so maybe I was traveling somewhere” [P11]. Participants also noted that label
suggestions made them more aware of brief actions occurring within a longer activity, helping them identify
when exactly these moments took place.: “I think that where I see the positive in it is that it makes you think that
by this time [point to the suggestion] I finished doing something. So it kind of brings up the the possibility that I did
move, that I did get out of the bed [...]. Instead of being too broad [with my annotation]” [U7]. The mean duration of
the annotations in version " is longer than in both versions S0 (Figures 5b and c), despite version " having
overall fewer annotations overall. We show an example of this behavior in Figure 6.

The label suggestions from the system also influenced participant annotation, especially with regard to their
annotation of uncertain intervals: ‘T feel that they (the suggestions) are useful to recall as well, and I was more
confident about what actually happened [sic.]” [U1]. This bias explains why the distribution of “certain” vs.
“uncertain” differed significantly between the two versions "' and versions S0 (x*(1) = 33.61,p < .001).
Although 44.1% of the data were annotated as uncertain in version ™, this percentage dropped to 7.6% in version
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Fig. 6. Labels reporting across versions. Each subplot shows the temporal distribution of labels for an individual (U6 and U5).
Participants annotated the same day using three different versions of ACAI U6 labeled with relatively consistent content,

(3}

density and duration across and conditions; U5, however, had noticeably sparser, longer labels for version and more

detailed, denser labels for version ® and 1O,

S0 (see Figure 5a). Because version 1) was highly rated and appreciated by our participants in Study 1, we
decided to use it for our longer, in-the-wild deployment of ACAL

5.2 Measuring the criterion validity of the collected labels (RQ2)

We measured the criterion validity of the collected labels across three conditions—each a different annotation
mechanism (24PAR, ACT24, and ACAI)-with two different approaches using the objective accelerometer data
from the thigh sensors.

5.2.1 Activity intensity level. We used the accelerometer data from the GT9X Link thigh sensor to compute
Monitor-Independent Movement Summary (MIMS) units? with one-minute epochs [43]. MIMS is a unit used to

https://www.rdocumentation.org/packages/MIMSunit/versions/0.11.2
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quantify physical activity from raw accelerometer data, designed to be comparable across different devices and
studies. We hypothesized that higher intensity of self-reported activity correlate with higher MIMS unit [81]. We
categorized the labels collected from the 24PAR interview, the ACT24 (the digital version of the 24PAR), and our
annotation interface (ACAI) into four different activity intensity levels (Sedentary, Light, Moderate and Vigorous)
following the guidelines from the Compendium of Physical Activity (CPA) [35]. We applied a linear mixed effects
model with random intercept and interaction:

MIMS ~ IntensityLevel % condition + (1|condition) + (1|subject)

Here, MIMS is the MIMS unit calculated from one minute of accelerometry data from the thigh. IntensityLevel is
one of the categories obtained from participant annotations using the CPA. We coded IntensityLevel into ordinal
values. The variable condition is ACT24, 24PAR or ACAI, and subject is the participant ID.

24PAR ACAI ACT24

30

20

— L //

Legend

©- Mean (CI)

MIMS

Sedentary Light Moderate  Vigorous Sedentary  Light Moderate Vigorous Sedentary Light Moderate Vigorous

Fig. 7. Annotated activity intensity level in three conditions (ACAI, 24PAR and ACT24) and the intensity level measured by the
thigh sensor. The ACAI condition shows clear distinctions in MIMS unit between Sedentary, Light, Moderate, and Vigorous
activity levels. The 24PAR condition shows statistically significant differences between Sedentary/Light vs. Moderate/Vigorous
activities. The ACT24 condition, however, shows less plausible and weaker correlations — such as vigorous activities being
associated with lower MIMS values than sedentary, light, or moderate activities — indicating that this annotation method
likely introduced substantial errors.

The intensity level measured using the thigh sensor (MIMS unit) showed a significant positive trend as the
annotated intensity level increased (ff = 4.16, p < .001). In the ACAI condition, the relationship between intensity
level and MIMS unit was significantly stronger, with a positive interaction coefficient of f = 1.95 (p < .001). This
suggests a greater increase in MIMS unit as intensity increases in the ACAI condition compared to the reference
condition (24PAR). In the ACT24 condition, the relationship between intensity level and MIMS unit is weaker,
with a negative interaction coefficient of f = —0.77 (p < .001). As the annotated intensity increases in the ACT24
condition, the MIMS unit increases less than in the 24PAR condition. Figure 7 shows the interaction between
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Predictor Est. p-value
IntensityLevel 4.16 <0.001 ***
condition (ACAI) -3.38 0.07
condition (ACT24) 0.47 0.81
IntensityLevel X condition (ACAI) 1.95 <0.001 ***
IntensityLevel X condition (ACT24) -0.77 <0.001 ***

Table 3. Linear mixed-effects regression model comparing intensity level of the anotated activity and the measurements
from the thigh sensor across three conditions. 24PAR is the reference condition.

the annotated intensity level and thigh sensor MIMS units across participants. This finding suggests that the
annotations generated using ACAI yield the most distinct and plausible MIMS patterns across the four intensity
levels. Specifically, the MIMS values increased in a consistent and expected manner (sedentary < light < moderate
< vigorous), indicating a strong alignment between ACAI labels and sensor-derived activity intensity. In contrast,
while 24PAR showed some separation between low and high intensity levels, ACT24 displayed weak or highly
implausible trends—for example, vigorous activity sometimes corresponded to lower MIMS values than sedentary.
This may be due to misaligned timestamps in the annotations generated by ACT24.

5.2.2  Detected locomotion. To further validate the self-report recalls, we compared the self-reports to the output
of a classification system using the raw thigh sensor accelerometer data. Prior works have shown Random forest
(RF) classifiers work well for the task of human activity recognition [24, 39, 76]. We trained an RF model and
evaluated on a subset of thigh accelerometer data from the [anonymized dataset name] simulated free-living
and laboratory (SimFL+Lab) data. We trained the model to predict five activity categories: Running, Walking,
Standing, Sitting, and Lying Down. On the [anonymized dataset] the RF achieved a weighted F1 score of 0.87 +0.03
on average across both thighs using a leave-one-participant-out cross validation. We included details about the
implementation as well as the class-wise evaluation of the model in Appendix C.

Table 4. F1 score between the HAR model predictions and participants annotations in the three study conditions. ACAI
(all)denotes all the annotations from the interface (both certain and uncertain labels). ACAI-Certain denotes only the certain
annotations.

24PAR ACT24 ACAI (all) ACAI-Certain
Sitting/Lying down 0.77 0.84 0.87 0.87
Standing 0.60 0.50 0.68 0.66
Walking/Running 0.30 0.22 0.45 0.48
Overall 0.68 0.78 0.84 0.82

We combined the “Sitting” and “Lying down” labels into “Sitting/Lying down” and “Walking” and “Running”
labels into “Walking/Running” to be consistent with the postures recorded in ACT24 and 24PAR protocols. We list
the F1 score between the HAR model predictions and the annotations across three conditions in Table 4. For each
category (“Sitting/Lying down,” “Standing,” “Walking/Running”) we filtered out the segments where participants
annotated the category, and the segments where the Random Forest (RF) model predicted the category to calculate
the F1 score. For posture A, we define TP (true positive) as the number of minutes when both the participants
and the RF model annotate posture A, FP as the number of minutes when participants annotate posture A but

the RF model predicts a different posture, and FN as the number of minutes when the RF model predicts posture
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A but the participant annotates a different posture. The F1 score is calculated as follows:

o TP TP Precision X Recall
Precision = ————; Recall = ———; F X —
TP+ FP TP+FN Precision + Recall
Overall, the annotations collected via ACAI demonstrated higher agreement with HAR model predictions
across all activity categories than both the 24PAR and ACT24 annotations. When analyzing only intervals labeled
as certain by participants, the agreement rate for “walking/running” activities was slightly higher than when
incorporating both certain and uncertain intervals in the analysis.

Overestimation of activity
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Fig. 8. An example from a participant in our study demonstrating how an ACA/ design limitation can lead to overestimation
of activity duration. Because we only allow participants to annotate in five-minute blocks with no option for categorical
uncertainty, the participant created overlapping labels, overestimating the duration of both the “walking” label (by 2 minutes)
and the “sitting” label (by 3 minutes).

Despite annotations from ACAI showing higher agreement rate with the HAR model compared to ACT24
and 24PAR, the overall agreement rate was lower than we expected, specifically for “walking/running.” There
are two main reasons for this low agreement rate: first, we noticed that participants tend to overestimate the
duration of their annotations. The HAR model made a prediction once every minute, but in 24PAR, ACT24 and
in ACAI, participants annotated in five-minute blocks. Therefore, if a participant took a walk from 16:35-16:43,
they would annotate the entire block from 16:35-16:45 as “walking” (see Figure 8). The second cause of low
agreement resulted from allowing participants to express temporal uncertainty (when an activity occurred) but
not categorical uncertainty (what specific activity occurred). This design differs from both the 24PAR and ACT24,
which permit participants to annotate proportional activity distribution (e.g., 95% sitting and 5% walking) within
a time segment. This design limitation in ACAI resulted in situations such as the one we demonstrate in Figure 9:
A participant spent two hours playing cricket, which was a complex activity involving multiple fast-changing
postures. Unable to recall the precise timing of these postures, the participant created one “standing, walking,
playing cricket” label that lasted for the entire two-hour period rather than specifying discrete time intervals for
each posture. This design limitation subsequently contributed to the systematic overestimation of some labels,
resulting in lower-than-expected agreement rates when compared to the HAR model’s predictions.

5.3 Feasibility of annotating data in free-living settings (RQ3)

We present exploratory findings from the feasibility portion of the second study (Study 2.2), including the
quantitative and qualitative results.

5.3.1 Quantitative results. During Study 2.2, over the course of seven days, we collected 93,905 min of annotated
data, with 92,620 min (98.5%) labeled as certain and 1,265 min (1.5%) labeled as uncertain. On average, we
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Fig. 9. Another example from a participant in our study demonstrating how an ACAI design limitation can lead to over-
estimation of duration of some activities. In this case, participants engaged in a complex activity (playing cricket), which
included fast-changing postures. Instead of creating different labels for “walking, playing cricket” and “standing, playing
cricket,” they merged the entire period as “standing, walking, playing cricket”

collected 14.7 hours of annotated data per day (excluding sleep). We collected 3,004 annotations, each annotation
(excluding sleep) with mean duration of 21.7 min. Among all the annotations, 311 of them (10.4%) have only
activity labels, none (0%) have only posture labels, and 2,693 (89.6%) contain both posture and activity labels. We
show the distribution of annotated activities in Figure 10. Overall, we collected 45 unique activity and posture
labels; including longer bouts of activities like “attending meeting” (M = 62.6 min, SD = 32.3) or “video game”
(M = 76.7 min, SD = 41.1) and shorter bouts of activities like “carrying groceries” (M = 15.8 min, SD = 11.4),
or “washing dishes” (M = 19.2 min, SD = 9.3). The median daily annotation time was 10.8 min (SD = 9.1). In
comparison, the median duration of a 24PAR interview in Study 2.1 was 23.5 min (SD = 10.3)°. Participants used
the application once daily on 55.8% of days and multiple times daily on 44.2% of days throughout the seven-day
study period. The mean response rate for yJEMA was 68.4% (SD = 14.7).

We used repeated-measures ANOVA to test whether there were changes in participants’ reporting patterns
over time. We found no changes in time taken to annotate (F[7,89] = 0.62, p = 0.8), the number of annotations
(F[7,89] = 0.97, p = 0.5), and the duration of individual annotations (F[7, 89] = 0.77, p = 0.6) over time.

5.3.2 Qualitative results. To assess qualitative reactions to ACAI in Study 1 and Study 2, two authors carefully
read each transcript from our field studies and independently performed open-ended inductive coding. The codes
were generated and improved iteratively. We merged similar codes/themes and removed codes outside the scope
of our research. The inter-rater agreement (Cohen’s kappa) after cleaning up the codes was k = 0.87.

Perceived effort. Participants identified perceived effort as the main factor affecting the usability of recall
systems, including both interface interaction demands and scheduling flexibility. Ten out of 14 participants in
Study 2 preferred digital recall interfaces over the 24PAR interview method, primarily due to scheduling flexibility
(e.g., “The interview is just you have to coordinate with somebody else and then you might be late and you might need
to reschedule” [P9]). The majority of participants in Study 2 (11 our of 14) preferred to annotate their activities at
the end of the day. Four participants preferred the 24PAR interview approach, appreciating that it eliminated
manual annotation tasks (e.g., “Obviously my favorite will be annotating it on the Zoom [call] because I don’t have
to put any efforts to it” [P8]). Among the digital options without human supervision, eight participants favored
ACAI over ACT24, citing the ability to revise annotations as a key advantage (e.g., “I think I could also edit it [the
annotation] if I make a mistake. You know, I think sometimes you put the pressure on yourself. You're like, I gotta
remember every single part of my day [at once] where in this case, you’re doing it yourself so you can take time.”
[P5]).

Perceived label accuracy. Ten out of 14 participants perceived that the annotations using ACAI were more
accurate compared to annotations in the 24PAR interviews and ACT24, mainly due to the contextual cues

3We could not retrieve recall duration information from ACT24.
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Distribution of annotated postures and activities

140

120

Duration (in minutes)

Fig. 10. Distribution of annotated activities/postures in Study 2.2. The box plot shows the distribution of duration for each
activity/posture. The blue circle denotes the median duration, and the size of the circle denotes the number of annotations
for each activity/posture.

presented in ACAI interface (e.g., “I think the one on my phone would be better because it is also showing you where
you are or terms of location and it’s also showing your footsteps and your heart rate.” [P9]). Three participants did not
perceive any differences in reliability across three conditions, and one participant believed the 24PAR facilitated
the most reliable annotation because of the interviewers’ probing (e.g., “When you are asked the questions, you
tend to figure out the answer, like when [the interviewer] asked me, OK, what else you were doing for this time. So I
got back into the memory and realized, oh, I was doing this” [P1]).

During both Study 1 and 2, of the seven types of contextual cues presented on the interface, yfEMA responses
and step count were often flagged as helpful for recalling activity: “So my the data which I relied on most was my
step counts because I know that if 'm walking, my step count is high.” [P7]; “A voice note that is written [on the
interface], like if I'm talking about some movie, then the conversation is actually noted there. So I can I know that I
was conversing, I was walking and I was talking on the phone or something” [P11]. For the other contextual cues,
the preference varied among participants, based on their lifestyle and habits (e.g., mobility patterns or calendar
and phone usage). For example, P4 mentioned the use of location during the recall process, saying ‘T actually
really like the location part because if I can’t remember what I'm doing, I'm like, oh, I'm at this location and I roughly
know that this is the classroom, so I was probably studying while I was in this classroom.” U7 said T would like
phone usage. That would tell me when I was on my break. That’s how I see it [being used since] I used to be a server”.
Three participants noted that they did not use an online calendar so the calendar section did not provide useful
reminders, with one saying “T don’t usually use that [calendar] on my phone” [U1].

Using uncertainty annotation. Only five of 14 participants mentioned using the uncertainty annotation
frequently. Four said that the uncertainty annotation was useful for annotating the transition periods between
activities (e.g., “It’s pretty useful. I have used it because there are it’s, you know, our days are not exactly discrete.
There is a transition period where you know from getting ready to walking out the door and riding in the bus and
even from getting up from the bed and going to the bathroom, there’s a transition period” [P9]). Three participants
mentioned that the uncertain annotation was useful at the beginning of the study, but became less useful as they
were more conscious of their activities later in the study. For example, one said “In the beginning, I use it because I
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wasn’t sure about my activities, but after the first day I was really sure and particular about the activity which I
have been doing” [P1].

6 DISCUSSION AND IMPLICATIONS FOR FUTURE WORK

The findings of our studies (related to the research questions) contribute to the existing literature and have
implications for future work on context-assisted activity recall and highlight the need to design future human-in-
the-loop activity recognition systems that require some end-user labeling of activity.

6.1 Design implications for future semi-automated activity recall systems (RQT1)

Study participants have difficulty accurately remembering the precise start and end times of their activities, which
presents a significant challenge for systems that require end-user-labeled activity to support human activity
recognition tasks [56]. Our ACAI system enables participants to incrementally label their own activities, aided by
contextual cues and auto-generated suggestions, and where they are able to express uncertainty about activity
transitions. Our usability studies revealed that incorporating uncertainty annotation did not increase perceived
workload or annotation time, nor did it decrease system usability. Participants demonstrated a clear preference for
modifying system-generated suggestions over creating annotations manually, with the semi-automated approach
reducing annotation time and enhancing system usability. Interestingly, our findings indicated that combining
these two design elements, uncertainty annotation and semi-automation, can introduce unexpected participant
bias, where users report higher confidence in their annotations and consequently underutilize the uncertainty
feature. These findings align with recent work suggesting that Al can affect users’ recall and perceived confidence
(65, 109].

A significant concern reported by participants in both studies was the cognitive and physical burden associated
with activity recall. While the uncertainty annotation feature helped reduce some of the cognitive load—by
allowing participants to express ambiguity in their responses—it also introduced increased annotation time and
interaction effort. In Study 1, results showed that effective interaction design could help reduce this physical
burden and shorten annotation time.

Several participants in Study 2, expressed a preference for conversation-based recall over screen interactions.
Recent research supports this direction. Voice-based interfaces have been explored to elicit activity labels more
naturally from participants [15, 53, 89]. With the rise of large language models (LLMs) and growing interest in
LLM-powered self-report systems [19, 64, 86, 103], there are promising opportunities to integrate conversational
agents into ACAI to make activity recall easier [5, 74].

Moreover, part of the cognitive burden may result from ACAI not supporting the expression of categorical
uncertainty. Although we initially considered supporting categorical uncertainty, internal testing revealed that
it significantly increased annotation time and effort, so we did not include it in the final deployment. Potter
et al. recently investigated how different visualizations of categorical and temporal uncertainty influence user
perception and performance in activity timelines [7]. Their findings suggest that uncertainty encoding can affect
how users engage with recall tasks. Future work should explore how to design such interactions in a way that
supports multiple uncertainty expressions without increasing annotation effort.

6.2 Effects of retrospective recall on data validity (RQ2)

Researchers have increasingly adopted retrospective recall systems to collect ground truth labels from study
participants as an alternative data collection approach. This methodology addresses limitations of traditional in-
situ measurements such as EMA by reducing contextual biases [72, 80] and interruption burden [60]. Researchers
have shown that context-assisted recall can increase accuracy when measuring moods and affects [83] as well
as increase annotation consistency and reduce missing data for measuring activity [38, 98]. In this paper, we
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compare our proposed context-assisted activity annotation system, ACAL with existing standards for activity
recall. Our results show that ACAI significantly outperforms both the human-supervised recall method (24PAR)
and the unsupervised digital recall method (ACT24), when evaluated against validated activity intensity units
(MIMS) and a human activity recognition (HAR) model. Most participants also had higher perceived reliability
and usability for ACAI as compared with 24PAR and ACT24.

We identified several design limitations that can affect annotation quality. Our decision to allow participants to
annotate activities in five-minute intervals rather than minute-by-minute segments (with an uncertainty option)
was based on previous research findings [98] that showed that participants found minute-by-minute annotation
excessively tedious. This granularity, however, introduced unexpected challenges and participant biases; we
observed that participants frequently overestimated the duration of certain activities, particularly “walking,”
instead of using the uncertainty annotation feature when appropriate. This issue highlights the need for two
improvements: (1) design modifications to minimize such overestimation tendencies, and (2) development of
models that can work with slightly temporally misaligned labels. Recent works in weakly-supervised learning
show the possibility of using datasets with imprecise timestamps to train activity recognition models [1, 8, 9].
From prior work and the results of our study, however, we believe that it is impractical to expect participants
in a research study to recall the timestamp and duration of their activities to the seconds/minutes. Instead, we
envision a human-AI collaborative system where an adaptive Al model can correct and flag irregularities of
human annotations. Over time, the model can adapt and learn about the participants’ daily habits and behaviors
to make more accurate activity predictions and suggestions.

Future research should investigate the internal reliability of ACAI-collected annotation, specifically examining
the efficacy of machine learning models trained on these annotations.

6.3 Towards building human-in-the-loop activity recognition systems (RQ3)

Systems that track personal habits and lifestyle patterns over time are invaluable for health informatics applications
and can be integrated into health intervention frameworks that promote longevity and well-being [21, 23, 66].
Individual habits and activities, however, naturally evolve, necessitating human-in-the-loop systems where
participants can continuously monitor their behaviors and refine model predictions to accommodate their
changing lifestyle patterns [1, 2, 41]. The ACAI semi-automated system enables participants to track and annotate
their activities through both real-time (in-the-moment) and retrospective (after-the-fact) mechanisms. During
the seven-day study, participants consistently reported diverse activities with minimal attrition or data gaps.
Our current implementation relies on heuristic models for activity suggestions and is adequate for investigating
the properties of the interface we describe in this paper, but future iterations should incorporate on-device,
real-time machine learning models that continuously adapt based on participant annotations [5, 100, 105].
Additionally, our interface currently displays predictions without explanations, which can frustrate users when
encountering inaccuracies or lead them to develop misconceptions about system functionality. Recent research
trends in activity recognition interfaces point toward systems that provide transparent, human-understandable
explanations [50, 106] and enable users to adjust and train models according to their unique lifestyle patterns and
preferences [63]; end-user annotation systems like ACAI will be required to conduct studies on such systems.

7 LIMITATIONS

Although our study demonstrated ACAI to be a promising solution end-user annotation, it has some limitations.
The first limitation is our small sample size, which skewed towards young adults under 30 years old, 83% of
whom self-reported to be familiar with self-tracking tools. The sample size in our second study also skewed
towards non-Hispanic Asian students, which limits the generalizability of our findings. Future works should
validate the design principles of ACAI in other populations (e.g., older adults). The second limitation of our work
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is the short study duration. Many data collection studies only run for one week; however, future research should
explore the use of our system in longitudinal studies to assess long-term compliance and data quality. The third
limitation of our work is the battery limitation of the Pixel Watch 2. Due to the intensive collection of passive
sensing data and pgEMA, the watch only ran 12-13 hours on a charge. This limited our ability to gather a complete
24-hour dataset, which is why we did not collect sleep-related data or labels. Another design limitation of our
study is that we used fixed thresholds in the ACAI visualization panel for heart rate and step count based on age
range; these values may not generalize well across individuals. This simplified design helped standardize feedback
during the study, but future deployments could adopt more personalized strategies. For instance, thresholds
could be dynamically adjusted using recent activity data from platforms like Google Fit, or initialized using
self-reported age and fitness level acquired during onboarding. These approaches would improve scalability while
ensuring thresholds remain suitable for all participants. Due to the scope of our study, we only assessed the
criterion validity of the annotations collected using ACAL Future research should assess whether the annotations
and data collected from our system can be used to train personalized HAR models that can adapt over time.
Lastly, our system design and user study setup aims to explore the usability and validity of ACAI for research
studies that must collect data and measure activities when participants receive little or no personal benefit from
the measurement. In a free-living, non-study scenario where participants do not receive financial incentives,
and where they may not establish rapport with and have frequent check-ins from a research team, labeling
quantity and quality might be impacted. If our proposed annotation system were integrated into an intervention
system that provides meaningful feedback to participants, it might increase participant motivation to provide
high-quality annotations.

8 CONCLUSION

In this paper, we introduce ACAL a novel context-assisted activity annotation interface that allows participants
to provide detailed activity labels and start-end times using context-cued self report and auto-suggested labels
that end users can“fix;” the system also allows participants to express uncertainty about temporal boundaries.
We conducted two user studies with 24 participants to evaluate three different system designs and to measure the
ecological validity of our system. We quantitatively and qualitatively assessed different factors that affect system
usability and data quality, and as a result recommend guidelines for future end-user annotation systems. Our
field deployment demonstrated the potential of using our system to collect rich, naturalistic activity labels, which
can potentially support further research into adaptive human activity recognition systems.
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A APPENDIX A: INSTRUMENTS

Table 5. List of item in the final usability survey participants filled out after trying all three versions of the interface; and

how they related to the hypotheses.

Questions

Responses

Rank each contextual information based on their usefulness in recalling
your posture/activity from most useful to least useful

Calendar events, Location,
Step count, Heart rate, Self-
report from smart watch,
Memory, Ambient noises

The ability to indicate uncertainty gives me the flexibility while annotat-
ing

The ability to indicate uncertainty helps me annotate faster
The ability to indicate uncertainty makes annotating easier
The system suggestions on the timeline helps me annotate faster

The system suggestions on the timeline makes annotating easier

H1

H1
H1
H2
H2

Strongly agree, Agree,
Neither agree nor disagree,
Disagree, Strongly disagree

Table 6. List of invalidated instruments administered throughout the two studies. The daily burden survey is prompted
through participants’ phone at the end of every day of data collection. Other surveys are administered at the final sessions.

Scale Purposes Study 1 Study 2
SUS [11] Measure usability of the system X X
NASA-TXL [14] Measure mental/physical workload and the speed X
of a task
Perceived burden survey Measure users’ perceived burden with the annota- X
[107] tion task
Daily burden survey [40,59] Measure daily burden level and comfort with the X
smartwatch
Semi-structured interview  Collect qualitative feedback about the study and X X

the usability of the system
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C APPENDIX C: HUMAN ACTIVITY RECOGNITION MODEL

The [anonymized dataset name] was collected from 40 participants engaged in 33 laboratory activities around
a university campus. We excluded two participants’ data due to missing data or data collection issues, leaving
data from 38 participants to train the model. Since participants in our study could choose to wear the sensor on
either their left and right thighs, we used both the tri-axial acceleration data sampled at 80 Hz from an Actigraph
GT9X-Link placed on the participants’ left and right thighs in the [name redacted] dataset (the same model
as the sensor used in our user study with similar placement). For training and evaluation, we segmented the
raw acceleration data into 60 s (4,800 samples), non-overlapping windows and extracted 12 features from the
accelerometer signal (64 features used in the feature vector). We implemented our RF model using sklearn v1.0.2
and 1, 000 trees.

Table 7 shows the list of features we extract from each axis of the thigh accelerometer signal. Table 8 shows
the results of validating the random forest model on [redacted dataset name].

Table 7. The eleven features we extracted from the thigh acceleration signal. Features were extracted from the raw signal
and the fast Fourier transform (FFT) of the raw signal.

Feature No. Description

Mean value of each axis (x, y, and z) and signal magnitude
Standard deviation (std) value of each axis (x, y, and z)
Mean deviation from mean of each axis (x, y, and z)
Median value of each axis (x, y, and z)

Minimum value of each axis (x, y, and z)

Maximum value of each axis (x, y, and z)

Number of peaks of each axis (x, y, and z)

Kurtosis of each axis (x, y, and z)

Skewness of each axis (x, y, and z)

Inner quartile range (IQR) of each axis (x, y, and z)
Area of signal magnitude

O 0 N QN U W=

—_ =
- o

Table 8. The results of leave-one-participant-out cross evaluation of the random forest (RF) model on the [anonymized
dataset]. The trained model was used to validate the self-report labels in Study 2. Results are reported by thigh side (Right
and Left) and by average.

Side Lying Down Running Sitting Standing Walking Overall

Right 0.86 + 0.05 0.56 £0.31 0.91+£0.03 0.79+0.06 0.91+0.02 0.87+0.02
Left 0.86 = 0.04 0.54+032 091%£0.03 0.79+0.06 0.91+0.02 0.87%0.03
Avg 0.86 = 0.04 0.56 £0.32 0.91+£0.03 0.79+0.06 0.91+0.02 0.87+0.03

D APPENDIX D: PROMPTS FOR GENERATING LABEL SUGGESTIONS

We used the same prompt format developed by Le et al. [60], adapting the list of activities based on the Com-
pemdium of Physical Activity 2024. The authors of the paper have ran the experiment with llama-3 8b and
validated on two different dataset annotation schemes, CAPTURE-24 [16] and Pirsiavash et al. [78], and found
that the model was able to categorize open-ended yEMA responses to structured annotation schemes with low
error rate (9-11%).
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This is what the person reported doing: [participants' self-report].

Map their self-report to one or more of the following labels:
sleep,
sitting,
standing,
lying,
kneeling,
bend over,

[redacted the list of activities from the CPA]
If the self-report fits multiple labels, separate them with a backslash
(such as sitting/use computer, standing/cooking, ...).
If the self-report doesn't fit any of the labels, return 'others'.
Give a single answer (no explanation, limited prose).
Do not invent new labels.

E APPENDIX E: DETAILS ABOUT ACTIVITY SUGGESTIONS ALGORITHM

To generate system suggestions for posture and physical activity, we followed two steps. First, we divided the
tri-axial accelerometer data into non-overlapping distinct segments using binary segmentation and then mapped
HEMA to these periods to produce the final annotations. For the segmentation, the smartwatch estimates physical
activity intensity using a real-time algorithm that measures the overall motion of the wrist based on accelerometer
data. The smartwatch samples raw tri-axial accelerometer data at 50 Hz and smooths the raw signal using a
moving average filter with a window size of 0.5 s (filtered signal). For each axis, the app computes the area under
the curve (AUC) AUC; = |raw; — filtered;| to compensate for the effect of gravity (DC offset for the axis) and
calculates a 10 s summary of AUC by summing AUC values from the three axes to derive a physical activity
summary unit [58-60]. The system runs a binary segmentation on the AUC signal (model = “rbf”, minimum
window size = 5 min, penalty = 5) to split the data into different time periods. We called this segmentation AUCs,,.

Next, the system runs collected pEMA responses through a large language model, llama-3 8b, to map the
HEMA self-report to a category in the Compendium of Physical Activity (CPA) 2024 [35]. We show details about
the prompt in Appendix D. We called the list of mapped pyEMA responses and their corresponding timestamps
HUEMA_Ist.

Finally, we map the AUC segments with its respective yEMA responses. Time periods without any correspond-
ing yEMA responses are marked as “unknown” (or “?” when displayed in the interface). Algorithm 1 details the
process of matching AUC segmentations to pfEMA responses.
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Algorithm 1 Activity suggestion algorithm (AUC;,y, pPEMA_Ist)

1: Initialize finalse,
2: for seg in AUCyey do
3 if no pEMA within seg then
finalsey[seg] < “unknown”
else if only one yEMA within seg then
finalgey[seg] < pEMA
else if multiple yEMAs within seg then
Split seg into multiple segments based on pEMA timestamps
Assign each of the sub-segments to the corresponding yEMA
10: end if
11: end for
12: return finalg,,

R e A A
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