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Abstract

Accurate human activity recognition (HAR) is critical for health
monitoring and behavior-aware systems. Developing reliable HAR
models, however, requires large, high-quality labeled datasets that
are challenging to collect in free-living settings. Although self-
reports offer a practical solution for acquiring activity annotations,
they are prone to recall biases, missing data, and human errors.
Context-assisted recall can help participants remember their activi-
ties more accurately by providing visualizations of multiple data
streams, but triangulating this information remains a burdensome
and cognitively demanding task. In this work, we adapt GLOSS,
a multi-agent LLM system that can triangulate self-reports and
passive sensing data to assist participants in activity recall and
annotation by suggesting the most likely activities. Our results
show that GLOSS provides reasonable activity suggestions that
align with human recall (63-75% agreement) and even effectively
identifies and corrects common human annotation errors. These
findings demonstrate the potential of LLM-powered, human-in-the-
loop approaches to improve the quality and scalability of activity
annotation in real-world HAR studies.
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1 Introduction

Human activity detection is crucial for enabling context-aware
interactive systems, including for health monitoring and interven-
tions. Researchers across ubiquitous computing, human-computer
interaction (HCI), digital phenotyping, and behavioral sciences
have long sought to use mobile and wearable sensing to develop
machine learning models for human activity recognition (HAR)
[1, 3,9, 22, 43]. Developing such models requires large amounts of
training data with high-quality labels. In practice, researchers often
rely on small, controlled laboratory datasets that offer limited label
diversity and overly homogeneous sensor signals. As a result, mod-
els trained on these datasets often fail to generalize to free-living
contexts, where activities are more heterogeneous, unpredictable,
and influenced by individual lifestyle differences [7, 17].
Collecting participants’ self-reports is a practical approach for
acquiring multi-day or multi-week activity annotations as individ-
uals go about their daily lives. Researchers can collect self-reports
either momentarily or retrospectively. Momentary measurements,
such as Ecological Momentary Assessment (EMA) [41], involve
prompting participants in real time to report their in-the-moment
activity. While effective for capturing immediate behavior, these
methods impose an interruption burden and are prone to contex-
tual response biases — participants’ likelihood of responding de-
pends heavily on their environment and situation at the time of the
prompt. This often leads to data missingness and label imbalance,
thus compromising the quality of the dataset [27, 34, 39].
Retrospective self-reports mitigate these issues by allowing par-
ticipants to recall and report their activities after-the-fact, typically
at the end of the day [1]. While less intrusive, retrospective recall is
cognitively demanding and vulnerable to recall biases, as prior or
subsequent events could distort memory accuracy. Two common
errors in retrospective activity recall are: 1) temporal errors, where
participants misremember the start or end time of events; and 2)
omission of concurrent activities, where secondary activities are
forgotten. To reduce temporal errors, researchers have developed
automated, context-assisted recall tools that provide participants
with contextual cues — such as location data or sensor-derived
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summaries — to help participants reconstruct their daily activi-
ties [40, 44]. Nevertheless, for participants in research studies, who
often have limited time, patience, and cognitive resources, review-
ing and triangulating multiple sources of data for accurate recall is
a significant burden [26].

Recent advancements in large language models (LLMs) present
a promising opportunity for HAR [4, 38]. LLMs possess broad com-
monsense knowledge and strong contextual reasoning abilities,
enabling them to integrate and triangulate information from mul-
tiple heterogeneous sources (e.g., location traces, wearable sensor
data, calendar events, and environmental context) to infer likely
activities and patterns [5, 45]. We argue that LLMs can proactively
suggest likely activities, flagging potential annotation inconsisten-
cies, and reducing the cognitive burden on participants during the
recall process. In this work, we adapt GLOSS, a multi-agent LLM sys-
tem originally designed for general contextual reasoning of passive
sensing data [5], to the problem of HAR, demonstrating its poten-
tial to serve as a core component of an intelligent, context-assisted,
activity annotation framework.

In this paper, we make the following key contributions:

e We present an extension of GLOSS, a multi-agent LLM frame-
work, applied to the problem of human posture and activity
annotation. Our findings suggest that GLOSS’s activity anno-
tations aligned with participant recall (63-75%), indicating
its potential to suggest activities.

o Through qualitative analysis, we show that several discrepan-
cies between GLOSS predictions and participant annotations
may stem from human recall limitations. We provide exam-
ples where GLOSS highlights inconsistencies that could help
identify and correct recall-related errors.

e We position this work as a proof of concept, demonstrating
the feasibility of leveraging LLMs to support human-in-the-
loop activity annotation. We also discuss future directions to
expand the framework’s capabilities and validate its utility
over longer-term, multi-day deployments.

2 Background

We build our work upon prior literature in human activity recogni-
tion (HAR) and recent works on integrating large language models
(LLMs) with passive sensing data from phones and wearables.

2.1 Measuring human postures and activities

Human activity recognition (HAR) involves identifying specific ac-
tivities or postures from sensing data, with accurate models critical
for powering interactive systems and understanding daily behav-
iors. Building such models demands labeled data, but most existing
HAR datasets, which researchers collected in controlled environ-
ments with limited labels, do not capture the complexity and vari-
ability of real-world behavior [3, 7, 17]. As a result, these models
often generalize poorly in free-living settings, where activities are
subtle, overlapping, and diverse, and they struggle to adapt to new
sensors or unseen activities without retraining [19]. Researchers
have explored simulating labeled free-living data using video or
language approaches [24, 28], and applying self-supervised learn-
ing by pretraining on large unlabeled datasets before fine-tuning
on labeled data [15, 16, 19].
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Participant self-reports offer another scalable way to gather
multi-day labeled data [2, 47], though they remain prone to tempo-
ral misalignment, missing labels, and recall biases that can degrade
model quality [23]. These limitations highlight the need for human-
in-the-loop systems that can intelligently suggest and refine activity
annotations, improving both the scalability and accuracy of data
collection—and ultimately enabling more robust, adaptable HAR
models for real-world use.

2.2 LLMs with passive sensing data

LLMs have shown potential in understanding and predicting health
and well-being outcomes (like depression, stress, and activities
[21, 38, 48]) from passive sensing data from smartphones and wear-
ables. As LLMs understand natural language better than a long
sequence of numbers, a common approach is to convert sensor
data into natural language formats, enabling LLMs to make predic-
tions about health outcomes [31, 46]. Additionally, researchers have
leveraged LLMs to generate narratives and summaries of passive
sensing data for users, showing that such formats can enhance re-
flection and engagement [11, 29, 35, 45]. Some prior works have also
fine-tuned LLMs on sensor data for different tasks like sensor-to-
text conversions[4] and drawing health insights[8]. As fine-tuning
requires time and effort, more recently, researchers have started
looking at multi-agent systems to build zero-shot models to de-
rive insights from passive sensing data[5, 33]. Choube et al. [5]
developed GLOSS, an open-ended multi-agent sensemaking system
for passive sensing data. GLOSS is an easy-to-deploy task-based
system capable of triangulating multi-modal data and presenting
insights tailored to the needs of the user. In this work, we extend
GLOSS for the task of triangulating multi-modal sensor streams
to generate suggestions for human activity annotations and also
correcting annotation errors and inconsistencies.

3 Methodology

We extend GLOSS and compare the system’s ability to generate
activity annotations by triangulating passive sensing information to
participants’ self-reported activity annotations in a research study.

3.1 ACAI platform and dataset

ACAI (ACtivity Annotation Interface) is a mobile app for research
data collection, capturing both passive sensing data and participant-
provided activity annotations (Figure 1) [26]. Eleven participants
wore a Pixel 2 smartwatch that recorded passive sensor data and
HEMA in-the-moment activity self-reports [27]. After two days
of data collection, they participated in a one-hour session using
the ACAI app to annotate their activities from the previous day.
The app displayed visualizations of the collected sensing data and
HEMA responses to help participants recall and label their activities
accurately. Every 15 minutes, participants answered yEMA prompts
on the smartwatch via speech [25, 27]. The app transcribed speech
on-device using a fine-tuned Google Cloud Speech-to-Text model
[13] and saved only the transcriptions. The list of passive sensing
data and self-reports displayed on the mobile app for participants
and available in the dataset is Table 1.

Validation studies of ACAI showed that while context-assisted
and heuristic-based segmentation reduces participant burden and
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Figure 1: Screenshots of the ACAI annotation app, where par-
ticipants can review their passive sensing data and annotate
their posture/activities throughout their waking day.

Table 1: Data streams and their sampling frequencies

Device
Phone

Data Stream (Sampling Frequency)

GPS location (1m), app use (1m), lock/unlock
events (1m)

Smartwatch | Step counts (1m), ambient noise classifica-
tion [14] (5m), heart rate (1m), uEMA responses
(15m), skin temperature (10s), wrist movement
data (10s).

improves annotation accuracy compared to 24PAR and ACT24
[20, 49], the resulting labels still contain errors, including inac-
curate boundaries, missing secondary activities, and overlooked
short bursts of activity. These issues stem not only from the cogni-
tive effort of integrating multiple data sources but also from human
factors constraints like inattention and reluctance to create de-
tailed labels. These issues extend beyond the ACAI platform and
are present in many other self-reflection systems [32, 47]. Leverag-
ing LLMs can help address these challenges by suggesting likely
activities and postures based on passive sensing data, providing
supporting evidence, and flagging inconsistencies to guide more
focused human feedback.

3.2 GLOSS: System overview

GLOSS is a system consisting of multiple LLM agents designed to
mimic the process of sensemaking in humans. This sensemaking
process in GLOSS involves two cyclic processes: the Information
seeking phase focusing on retrieving information from the datasets
and processing the raw data into more a understandable format; and
the Sensemaking phase focusing on triangulating and interpreting
the results from multiple data streams, as well as presenting the
final results.
GLOSS’s network includes eight LLM agents (Figure 2):
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o Action plan generation agent: This agent takes in the user
query and creates a high-level plan to answer the user query
using the available data.

o Next step agent: In each cycle, the Next step agent deter-
mines whether the current understanding sufficiently an-
swers the user query based on the action plan. If not, the
agent enters the information-seeking-sensemaking loop.

o Information seeking agent: This agent creates specific in-
formation requests to retrieve information from the databases
to answer the user query. This can involve fetching, process-
ing, or triangulating multiple data streams.

e Database manager agent and Code generation agent:
The Information seeking agent can pass requests to Database
manager agent to retrieve or process data. Using some pre-
defined helper functions, the Code generation agent writes
and executes Python scripts to process the data. The final
results are sent to the Sensemaking loop.

e Local and global sensemaking agents: The results of data
retrieval and code execution process are passed to the Local
sensemaking agent to generate a natural language representa-
tion. The system adds these results, along with the informa-
tion requests generated by the Information seeking agent, to
the memory. The Global sensemaking agent then reviews the
action plan, previous understanding and memory to create a
new understanding of the user query. The process then goes
back to the Next step agent, completing one iteration of the
sensemaking loop.

o Presentation agent: Once the Next step agent determines
that the current understanding is sufficient for the user query,
it hands the process over to the Presentation agent. The agent
extracts the response to the user query from the understand-
ing, and formats the response according to the user-specific
presentation instructions (if applicable).

3.3 Adapting GLOSS for Suggesting and
Correcting Annotations

The original GLOSS design focused on creating a query-based sys-
tem with a minimal learning curve, enabling users to ask about
a wide range of topics—such as stress, mobility, or social interac-
tions—through a chat interface. In this work, we introduced several
design modifications (DMs) to better support suggestions and cor-
rections for human posture and activity annotations.

DM1: Emphasis on change detection helper functions to
identify start and stop time of activities.

The GLOSS system allows adding helper functions to assist in
processing data and performing triangulation. In this work, we
focus on the task of activity suggestion, which involves two sub-
tasks: (1) identifying the start and stop times of activities, and (2)
identifying the activity labels. Although LLMs are capable of using
contextual information and self-reports to infer activity and pos-
ture labels, they struggle with understanding temporal structures.
Tasks like change-point detection from raw data require logical
and numerical reasoning, which LLMs often fail to provide [42]. To
address this, we extended GLOSS with pre-defined change point de-
tection functions for each data stream to process transitions better.
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Figure 2: Networks of LLM agents and their interactions in GLOSS.

For step count, heart rate, skin temperature, and wrist AUC data,
we implemented a heuristic sliding window z-score-based change
point detection algorithm with a minimum segment duration of
60 seconds [12]. For location data, we used DBSCAN to identify
clusters where participants spent a significant amount of time [10].
For phone usage, we provided a pre-defined function that extracts
periods of continuous phone interaction.

DM2: Effects of detection windows on activity agreement

with human annotations.

We passed the list of data collected by ACAI (Section 3.1) to
GLOSS in fixed-length segments — for example, asking it to suggest
a list of postures and activities a participant engaged in from 8am to
9am (one-hour window), or from 8am to 10am (two-hour window).
This method keeps the input within the language model’s context
length and fits well in real-time systems. This approach, however,
has two drawbacks. GLOSS may lose continuity between time win-
dows, which increases the number of tokens it needs to generate,
since it must recreate action plans and code from scratch each time.
It can also lead to inconsistent responses, especially for longer ac-
tivities that span multiple windows. To address these issues, we
adopted a temporally-persistent implementation strategy, where
we freeze the same action plan across consecutive time windows.
Additionally, we pass understanding of the previous time window
as an input to the sensemaking process of the current time window.
This approach allows GLOSS to behave more like a cohesive system
that builds on prior context, rather than treating each prompt as
an isolated task.

DM3: Consistent presentation of results and mapping of
postures and activities.

GLOSS was originally designed as an open-ended query interface.
In the context of human activity recognition and health sciences,
however, researchers are interested in a defined and structured set
of labels. Thus, we want GLOSS to generate labels from a predefined
set of relevant activities, rather than producing arbitrary ones. To

Table 2: List of postures and activities passed to the Presenta-
tion agent for generating predictions.

Postures [ Activities
sitting, video gaming, walking, stair climbing, getting ready,
standing, driving, bicycling, vigorous bicycling, aerobics, clean-

lying down, | ing, cooking, laundry, playing with pet, listening to mu-
reclining, sic, watching movies/TV, studying, reading, riding in
upright car, riding train, riding bus, playing musical instruments,
attending meeting, computer using, phone using, run-
ning, getting dressed, grooming, using bathroom, eating,
talking, strength training, washing dishes, carrying gro-
ceries, putting away groceries, shopping, making bed,
packing/unpacking, sleeping, playing sports

ensure consistency and robustness, we provide the list of predefined
posture and activity labels (Table 2) - along with the desired output
format, to the Presentation agent. Our design aims to support the
integration of our system to more structured activity recognition
or intervention systems that require fixed format. A structured
output also makes the validation process easier. The list of activity
labels, however, can be extended or made open-ended based on the
requirements of the study.

The GLOSS framework is implemented in Python using the
LangChain and AutoGen frameworks to manage interactions be-
tween LLM agents. We used GPT-40 [37] as our Large Language
Model and designed prompts following OpenAI’s recommended
best practices for prompt engineering [36]. In our GPT-40 API calls,
we set temperature = 0 and top, = 1. To ensure security and pre-
vent potential harm to the system running GLOSS, we executed
any code generated by the LLM models within a Docker container.
In our experiment, we stored the raw passive sensing data from
the ACAI dataset in MongoDB databases and connected these to
the Database Management Agent within GLOSS. We show an ex-
ample of running GLOSS with detection window of one hour for a
participant in Figure 3.
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UNDERSTANDING

Based on the data collected for user_id 'pilot2' on '2025-02-19'
between '17:00:00' and '18:00:00', we can summarize potential
activities and postures in distinct time periods as follows:

1.17:00:00 - 17:05:00: The step count indicates walking or light
jogging with an initial spike in heart rate, suggesting possible
movement indoors or light activity. Ambient noise recognition
(‘Animal, Inside, small room') may imply being in an indoor space with
background noise. Possible activities include walking indoors, light
indoor exercises, and transitional movement between locations.
2.17:06:00 - 17:10:00: Step data and a steady heart rate intensity
suggest moderate movement which aligns with sitting down later.
User self-reports and ambient noise ('Inside, small room') suggest
settling into a spot, possibly starting academic or personal studies.
Possible activities include settling down at a library, sitting and using
a laptop, and quiet personal time indoors.

[redacted for brevity]

FINAL ANSWER

17:00-17:05: standing, walking, getting ready, phone using
17:06-17:10: sitting, studying, computer using, reading
17:19-17:25: sitting, phone using, reading, studying

Figure 3: Example understanding and final answer generated
by GLOSS.

Table 3: Agreement rate between GLOSS predictions and par-
ticipants’ self-annotated postures and activities.

Window size Agreement rate

30-minute 0.73 (SD = 0.10)

One-hour 0.75 (SD = 0.11)

Two-hour 0.63 (SD = 0.13)

Four-hour 0.65 (SD = 0.14)
4 Results

In this section, we present the results of running GLOSS through
the dataset annotated by the participants in the ACAI study.

4.1 Comparison with human recall

We present the agreement rate between participants’ self-annotations
with GLOSS suggestions in Table 3. We calculate the agreement
rate using the following formula:

#labelsSuggested

#totalLabels
where #labelsSuggested is the number of labels annotated by the
participants that are also in the list of labels suggested by GLOSS,
and #totalLabels is the total number of labels annotated by the
participants. We do not account for false positives produced by
GLOSS in our metric, as the intended application of GLOSS is to
serve as a suggestion tool for activity annotation. Since GLOSS can
suggest three activities and one posture at a time, its high positive
rate means that, even in the presence of some false positives, it
might still reduce the annotation effort on participants.

GLOSS predictions show good agreement with human anno-
tations at smaller time windows of 30 minutes and one hour but
exhibit lower agreement at longer windows of two hours or more.

AgreementRate =
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Although we configured GLOSS to produce suggestions at minute-
level granularity, its outputs often default to fixed-length time
blocks (such as 10, 15, or 30 minutes) when using longer detec-
tion windows. In the example below, in a one-hour window, GLOSS
generated dynamic, minute-by-minute suggestions. In contrast,
with a two-hour window, it segmented the timeline into uniform
15-minute blocks.

Two-hour window
20:00-20:15: sitting,
computer using, reading,
phone using
20:15-20:30: standing,
cooking, phone using,
listening to music
20:30-20:45: standing,
cleaning, phone using,
listening to music

One-hour window
11:00-11:09: sitting,
riding train, reading,
phone using
11:09-11:13: standing,
running, phone using,
listening to music
11:13-11:26: sitting,
riding train, reading,
phone using

4.2 Potential to fix incorrect annotations

In our experiments and quantitative evaluations, we treat human
annotations as the best approximation of ground truth for postures
and activities. This is based on the premise that participants could
review multiple data sources and annotate using both the data and
their memory. These annotations, however, are still susceptible
to error. Due to limited screen space in the phone, cognitive and
time demands, participants may overlook brief events or struggle
to triangulate information from multiple data streams. Given such
inconsistencies, GLOSS can be especially valuable in a human-in-
the-loop annotation workflow, where it can help flag inconsistencies
or even correct potential errors in the participants’ labels. Based on
our analysis, we found three common types of annotation mistakes:
participants often 1) failed to annotate short bursts of activity;
2) omitted secondary activities when multitasking; and 3) made
mistakes in the start/stop time (temporal errors).

We show an example of the first type of mistake in Figure 4. In
this example, the participant annotated ’sitting, riding train’ from
12:30 p.m. til 1 p.m. The step count from Pixel watch, however,
indicates that there was a brief period of *walking’ from 12:47pm
to 12:55pm. GLOSS was able to flag this period as 'walking’.

We present another example of GLOSS correcting participants’
annotations in Figure 5. The participant was using phone between
12:30pm-1pm. There was, however, a change of activity from ‘sit-
ting’ to ‘walking’ around 12:50pm. We believe that since the partici-
pant viewed ‘walking’ as their main activity, they forgot to include
‘using phone’ as a secondary activity. Using the participant’s phone
usage data, GLOSS was able to flag ‘using phone’ as the secondary
activity label, providing more information to the participant’s con-
textual states and behaviors.

In both examples (Figure 4 and 5), the participants underesti-
mated the start time of the "walking’ label. In Figure 4, the first bout
of "'walking’ began around 12:12, but the participant annotated the
start time as 12:18. Similarly, in Figure 5, the participant started
walking around 12:47, but the start time was annotated as 12:50.
GLOSS was able to cross-reference with the step count to fix the
boundary of the label. Although these mistakes may seem minor,
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Figure 4: GLOSS flagged potential missing label

prior work has shown that even small temporal misalignments can
reduce the performance of HAR models trained on such data [23].

5 Discussions and Future Works

In this section, we discuss our results, outline the potential of a
multi-agent LLM system for human activity annotation, and reflect
on the implications and limitations of our work.

Recalling activity is a time-consuming and cognitively demand-
ing task for participants. yEMA —a method where individuals re-
port their current activity and posture via their phone or smart-
watch—offers a promising approach to support later recall dur-
ing annotation[18]. A key limitation of ygEMA is the frequency
of prompts: prompting frequently can become burdensome and
even frustrating for participants, ultimately affecting their compli-
ance. Human-in-the-loop systems that combine users’ self-reports
(MEMA) with passive sensing data from phones and wearables to
improve recall quality offer promising direction. In this work, we
take a step forward in human-in-the-loop systems by extending
a LLM-based system GLOSS for suggesting and correcting activ-
ity annotations using participants’ yEMA responses and passive
sensing data.

The quantitative and qualitative results from our preliminary
experiments show positive signal for assisting activity annotation.
For participants, reliable suggestions integrated into the annota-
tion interface means they might not need to browse through an
exhaustive list of activity labels. For researchers, our system can
help correct inaccurate annotations, reducing the need for manual
data cleaning when building activity recognition models. While
these are some direct implications, we also believe that our system
has tremendous potential in longitudinal free-living studies. In such
settings, our system may initially rely on participant input (e.g.,
via pfEMA or recall) to learn their routines (Figure 6). Over time,
as it gathers more passive sensing data, the system could begin to
infer daily activities autonomously, prompting participants only
when irregularities or uncertainties are detected. We do not en-
vision a system that removes participant input entirely; instead,
we see an evolving system that intelligently balances automation
with selective user engagement, reducing burden while preserving
accuracy [6, 30].
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Figure 6: GLOSS failed to suggest the correct activity without
the appropriate data and context (no data from computer).

Despite these promising directions, our current work has limita-
tions. Due to the scope of this workshop paper, we did not conduct
a comprehensive quantitative evaluation of all aspects of GLOSS.
Additionally, our evaluation was based on a single day of partici-
pant annotations, which limits the generalizability of our findings.
In future work, we plan to categorize different types of annotation
errors and expand our system to support real-time flagging and
correction of participant-generated annotations. We also plan to
explore the integration of GLOSS with existing annotation inter-
faces to better support both structured and open-ended activity
sensemaking.
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